
Incremental-Concurrent Fusion Checking for Efficient
Context Consistency

Lingyu Zhanga,b, Huiyan Wanga,b,∗, Chuyang Chena,b, Chang Xua,b, Ping Yua,b

a
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

b
Department of Computer Science and Technology, Nanjing University, Nanjing, China

Abstract

Smart applications can adapt their behaviors based on their understanding to environ-

ments (a.k.a. contexts). This capability can, however, incur unexpected misbehavior

or even crash, when application contexts are inaccurate or conflicting with each other

due to environmental noises. In the recent decade, various constraint checking tech-

niques have been proposed to help validate contexts against consistency constraints,

in order to guard context consistency in time. However, with growing environmental

dynamics and context volume, it is getting increasingly challenging to ensure context

consistency. In this article, we propose a novel approach, INFuse, to fuse together

two lines of techniques, namely, incremental checking and concurrent checking, for

sound and efficient constraint checking. Realizing such check fusion has to address

the challenges rising from the gap between themicro analysis for reusable elements in

incremental checking and the macro collection of parallel tasks in concurrent check-

ing. INFuse solves them by automatically deciding maximal concurrent boundaries in

a sequence of context changes, and soundly fusing incremental and concurrent check-

ing together for context consistency, with theoretical guarantees. Our experimental

evaluation with real-world context data shows that INFuse could improve constraint

checking efficiency by 3.0x–120.3x, as compared with existing state-of-the-art tech-

niques, with better checking quality.

∗Corresponding author
Email addresses: zly@smail.nju.edu.cn (Lingyu Zhang), why@nju.edu.cn (Huiyan Wang),

chuyangchen2018@outlook.com (Chuyang Chen), changxu@nju.edu.cn (Chang Xu),
yuping@nju.edu.cn (Ping Yu)

Preprint submitted to Journal of Systems and Software September 17, 2023

Keywords: Constraint checking, context consistency, check fusion.

1. Introduction

In the software engineering community, consistency management of software ar-

tifacts (e.g., edit script [1], UMLmodels [2–4], andXML documents [5–7]) has received

much research attention [8], and been intensively involved in various software devel-

opment processes. In the recent decades, there is an increasing demand for managing5

the consistency of contexts, in order to support smart, yet reliable adaptation behav-

iors in self-adaptive or context-aware applications [9]. Unlike traditional software

artifacts that are typically static or evolve slowly, contexts, representing an appli-

cation’s understanding to its running environment, are typically prone to frequent

changes, and thus call for efficient constraint checking techniques for their runtime10

validation.

Such validation is usually conducted by examining the contexts collected by an

application (or its supporting infrastructure) against a set of predefined consistency

constraints [5, 10, 11]. If any constraint violation is detected, it would indicate the

occurrence of a context inconsistency. Various constraint checking techniques [5, 10,15

12–14] have been studied with different efficiency benefits and costs, e.g., xlinkit [5],

working in a full checking way, generating all results as the correctness baseline,

PCC [12], checking incrementally by reusing previous results for more efficiency, and

Con-C [13], checking concurrently basic parallel units that carry similar workloads.

However, with the increasing growth of environmental dynamics and context volume,20

it is getting more and more challenging to validate context consistency in a timely

manner, thus causing missed inconsistencies or wrong reports [10].

One natural intuition is to fuse incremental checking (e.g., PCC [12]) and concur-

rent checking (e.g., Con-C [13]) for even higher efficiency. Indeed, they have been

developed from two orthogonal research dimensions, but their fusion is actually non-25

trivial, with no substantial progress after nearly one decade since their initial pro-

posals. The essential challenge probably comes from this gap: incremental checking

analyzes in a fine granularity for reusable parts in previous checking results, while

2

concurrent checking requests to maximize parallel tasks. In other words, the former

has to accumulate micro parts (since larger parts not easy for analysis), but the latter30

requires macro arrangements (since smaller parts not effective for concurrency). If

one naively injects concurrent checking into incremental checking (e.g., by concur-

rently conducting the reusable result analysis in a fine granularity), the performance

may instead be compromised (e.g., even less efficient than incremental checking, as

our later experiments validated). On the other hand, if one aggressively enlarges the35

analysis granularity of incremental checking, improper grouping of context changes

as a whole could instead lead to wrong results, unfortunately denying the purpose of

constraint checking itself.

In this article, we propose INFuse (short form for Incremental-CoNcurrent Fusion

ChEcking) to address these two challenges from the above gap: (1) What-correctness40

problem: to automatically analyze and decide the boundaries of collected context

changes under checking formaximal concurrency (i.e., checking these context changes

as a whole guarantees to be correct, as against checking them individually); (2) How-

correctness problem: to soundly switch between incremental checking and concurrent

checking upon the context changes grouped as a whole for higher efficiency (i.e., ef-45

ficiently conducting both result reusing and parallel analysis). We address both chal-

lenges with theoretical guarantees.

We experimentally evaluated INFuse and compared it to existing constraint check-

ing techniques on application scenarios with real-world context data following exist-

ing work [10, 12–14]. The experimental results show that INFuse could dramatically50

boost the checking efficiency (up to 120.3x, 62.3x, and 5.7x improvements) by saving

checking time (up to 99.2%, 98.4%, and 85.0% time reductions), as compared to existing

techniques (ECC, Con-C, and PCC, respectively). When tested in a practical scenario

with dynamic changes, INFuse won with extremely high efficiency and almost per-

fect checking results, while existing techniques suffered down to a 3.3% precision and55

1.3% recall, exhibiting INFuse’s clear technical superiority and applicability.

In summary, we in this article make the following contributions:

• We propose a novel constraint checking approach, INFuse, with incremental-

3

concurrent checking techniques soundly fused.

• We prove INFuse’s properties, namely, what-correctness for concurrency max-60

imization, and how-correctness for fusion soundness, together contributing to

INFuse’s checking correctness and high efficiency.

• We study INFuse’s time complexity, formally analyzing its efficiency superior-

ity over existing techniques algorithmically.

• We evaluate INFuse and compared it to state-of-the-art techniques, observing65

substantial efficiency improvement and desirable checking quality.

We also summarize our major extensions made in this article over the its prelim-

inary conference version [15] below:

• Methodology: We prove two theorems in details about INFuse’s what-correctness

and how-correctness (Sections 3.2 and 3.3), explain the realization details in ap-70

plying INFuse in practice (Section 3.4), and analyze INFuse’s time complexity

and compared it to those of existing checking techniques (Section 3.5);

• Evaluation: We strengthen the scale of experiments (24-hour contexts now

vs. 3-hour contexts originally) for answering three original research questions

(RQ1, RQ2, and RQ5 in Section 4), and add two new research questions (RQ375

and RQ4) for studying INFuse fusion mechanism and the impact of complexity

factors (Section 4).

The remainder of this article is organized as follows: Section 2 introduces the

background and formulates our problem. Section 3 elaborates on our INFuse’smethod-

ology with formal complexity analysis. Section 4 evaluates INFuse with real-world80

application scenarios. Section 5 discusses the related work in recent years, and finally

Section 6 concludes this article.

4

2. Background

2.1. Preliminary

We define a context as a piece of information about an application’s running envi-85

ronment (e.g., location, user, activity, etc.) [10, 12, 14]. Each context can be modeled as

a finite set of relevant elements. For example, in a package delivery application [10, 12]

that schedules transportation robots across warehouse, all robots currently in ware-

house x can be modeled by a context𝐶x = {r1, r2, · · · }, in which r𝑖 identifies a specific

robot.90

We define a context change to be an update to an existing context, which can be

an addition change or deletion change. We use symbols (“+”, “−”) to represent them,

respectively. Consider this application with context𝐶x = {r1, r2}. If robot r3 enters or

r2 leaves the warehouse, we have context changes <+, 𝐶x, r3> or <−, 𝐶x, r2>.

We use context pool to represent the collection of all contexts interesting to the95

application. For the aforementioned application, its context pool is 𝑃 = {𝐶x,𝐶y},

which considers warehouses x and y.

To validate contexts, one could define consistency constraints [5, 10], which model

physical laws or application-specific requirements [5, 10, 12], and check whether any

constraint is violated (when yes, an inconsistency is detected). Existing work [10, 12,100

14] hasmostly followed a first order logic (FOL) styled language to specify consistency

constraints:

𝑓 :=∀𝑣 ∈ 𝐶 (𝑓) | ∃𝑣 ∈ 𝐶 (𝑓) | (𝑓) and (𝑓) | (𝑓) or (𝑓) |

(𝑓) implies (𝑓) | not (𝑓) | 𝑏𝑓 𝑢𝑛𝑐 (𝑣1, 𝑣2, · · · , 𝑣𝑛) | True | False.

Here, 𝐶 represents a context; 𝑣𝑖 is a variable, taking an element from 𝐶 as its

value; the 𝑏𝑓 𝑢𝑛𝑐 terminal is a domain-specific function that takes values of variables

as input and returns a Boolean value (True or False). For example, one may define

a consistency constraint like “any robot can only be in one warehouse at the same

time” [10], for the aforementioned application:

Sloc : ∀𝑣x ∈ 𝐶x (not(∃𝑣y ∈ 𝐶y (Same(𝑣x, 𝑣y)))).

5

Figure 1: An illustrative example (𝑃𝑖 is the evolving context pool after each context change)

Incremental checking [12] examines each context change to analyze its impact on

a constraint’s previous checking result, while concurrent checking [13] would request

multiple context changes for parallelism. In the following, we analyze the challenges105

when one combines the two techniques together.

2.2. Illustrative Example and Challenges

Consider our package delivery application with two warehouses (x and y) and

three robots (r1, r2, and r3). In this scenario, robotmovements are captured by the RFID

technology. Suppose that initially robot r1 is in warehouse x and r2 in y. However,110

RFID technology typically suffers frommissing reads [16–19] during this process, and

this is common in practical RFID-enhanced sensing. In this scenario, robot r3 enters

warehouse y, and r2 leaves y and re-enters y. Next, robots r3 leaves y, enters x, and

leaves x in turn. Therefore, we consider such a situation, in which the movement

of robot r3 leaving y is accidentally missed, i.e., <−, 𝐶y, r3> (chg′) was “missed” (five115

changes remaining), as illustrated in Fig. 1. We call it “missed” here because it is

caused by the RFID missing read problem.

When one conducts constraint checking on the context pool upon each context

change (as the individual checking illustrates in Fig. 1) against the aforementioned Sloc

constraint, a context inconsistency inc1 would be detected at 𝑃4 (suggesting robot r3120

in both warehouses x and y). Incremental checking can work to speed up the checking

upon each context change.

6

and

∀	𝑣! ∈ 𝐶! ∀	𝑣" ∈ 𝐶"

(a) Parallel structure

∀	𝑣! ∈ 𝐶!

∀	𝑣" ∈ 𝐶"

(b) Nested structure

Figure 2: Two structures of consistency constraints

If one applies concurrent checking, multiple context changes have to be consid-

ered for parallelism. Then these changes are applied together and checked as a whole

(as the whole checking illustrates in Fig. 1). However, checking the final context pool125

𝑃5 would report no inconsistency. The inconsistency inc1 is missed (or kept hidden

in constraint checking) due to the interference between chg4 and chg5. This context

inconsistency is missed due to checking certain context changes as a whole, and it

is a problem with the constraint checking itself. We explained it by “(the inconsis-

tency) kept hidden in constraint checking”, implying that the inconsistency missing130

is caused by improper grouping of context changes (to be explained later). Therefore,

we consider the sequence of these five changes invalid for checking together. Then

our first question (challenge) arises: How does one compose constraint checking tasks

that both maximize the parallelism (i.e., involving more context changes) and guarantee

the validity (i.e., inconsistency never made hidden)? Fusing incremental checking and135

concurrent checking together (or fusion checking) has to answer this question.

Now suppose that we have obtained a valid constraint checking task, which in-

volves four context changes (chg1, chg2, chg3, chg4). Then, how can one realize both

incremental checking and concurrent checking on these changes? The former handles

these changes in turn according to their temporal orders, while the latter parallelizes140

the handling of these changes without any temporal order. This could induce natural

logical conflicts (e.g., considering that change chg3 is to add an element deleted by

chg2).

To alleviate the complexity, one might consider grouping context changes accord-

ing to different contexts they relate to, e.g., partitioning context changes into context145

𝐶x-related changes and 𝐶y-related changes. Still, checking the two groups concur-

7

rently may be intertwined. For a consistency constraint illustrated in Fig.2a with

a parallel structure, it could be possible to handle the two groups of context changes

concurrently. However, if the constraint has a nested structure as illustrated in Fig.2b,

the two groups of changes certainly have intertwined impacts on the constraint (i.e.,150

depends-on or subsumed), as concurrent checking would induce unexpected conse-

quences. Therefore, we have the second question (challenge): How can fusion checking

work correctly?

2.3. Problem Formulation

We formulate the preceding two questions (challenges) into two problems, namely,155

what-correctness and how-correctness.

Given a sequence of context changes under checking, (𝑐ℎ𝑔1, 𝑐ℎ𝑔2, . . .), 𝑃𝑖 rep-

resents the evolving context pool after applying change 𝑐ℎ𝑔𝑖 to existing contexts

in pool 𝑃𝑖−1. 𝑃𝑖 is the collection of all contexts interesting to the concerned ap-

plication at time 𝑡𝑖 (𝑃0 is the initial pool at time 𝑡0). To be specific, we have used160

ideal_chk(𝑃𝑖 , 𝑠) and chk(𝑃𝑖 , 𝑠) to denote the checking functionalities provided by the

ideal checking and our fusion checking, respectively, which return reported incon-

sistencies as the results when examining the contexts in 𝑃𝑖 against constraint 𝑠 . The

what-correctness requests that our fusion checking should produce the same check-

ing results by checking context changes as a whole, as compared to checking them165

individually. That is, it should carefully decide what context changes to check as a

whole, so as to avoid any interference inside these changes. Given a checking task

(𝑇 = (𝑐ℎ𝑔𝑚, 𝑐ℎ𝑔𝑚+1, ..., 𝑐ℎ𝑔𝑛)), the what-correctness is as follows:

chk(𝑃𝑛, 𝑠) =
𝑛⋃

𝑖=𝑚

chk(𝑃𝑖 , 𝑠) (1)

The how-correctness requests that our fusion checking should produce the same

checking results by fusing incremental and concurrent checking together, as com-170

pared to checking directly (e.g., by entire [5], incremental [12], or concurrent check-

ing [13]). It is as follows:

chk(𝑃𝑛, 𝑠) = ideal_chk(𝑃𝑛, 𝑠) (2)

Our fusion checking addresses the two correctness problems in the next section.

8

Figure 3: Overview of our INFuse approach

3. Methodology

3.1. Approach Overview175

Fig. 3 overviews our fusion checking (INFuse) approach. It consists of two parts,

namely, WHAT-TO-CHECK and HOW-TO-CHECK, targeting at our preceding two

challenges, respectively. The first part decides boundaries of context changes that

are valid to check as a whole (Section 3.2), and the second part realizes the fusion of

incremental and concurrent checking (Section 3.3).180

In the first part, INFuse analyzes the impacts of context changes of different types,

examines what impacts would cause context inconsistencies hidden, and derives va-

lidity criteria for deciding what context changes to group together. In the second

part, INFuse checks grouped context changes as a whole using its own incremental-

concurrent fusion semantics for inconsistency detection.185

3.2. WHAT-TO-CHECK: Task Arrangement

INFuse decides proper boundaries in a sequence of context changes, so that each

decided group of changes are valid to check as a whole. “Valid” means that no in-

consistency would be hidden in the constraint checking. Each valid group of context

changes composes a constraint checking task.190

To decide the validity, we would first investigate the impacts of different context

changes on the checking of a given consistency constraint. Specifically, if a context

change can cause the constraint’s evaluation from True to False, it tends to expose an

9

inconsistency. Otherwise, the change can cause the constraint’s evaluation from False

to True, and it tends to hide an inconsistency. The insight of INFuse is to analyze and195

avoid the combination of such two context changes (otherwise, the first inconsistency

might thus become hidden), but the challenge is that INFuse has to decide it before ac-

tual evaluation. Later, based on such impact analysis, INFuse derives validity criteria

for constraint checking tasks, and arranges context changes into proper groups.

We elaborate on our idea in three steps.200

Step 1: Impact analysis. We now model more precisely a context change in a

form of < type, context, truthvalue >. A truth value has only two values, i.e., True

and False. When we talk about the truth value of a consistency constraint, it must

be one of them. Nevertheless, when we model the impact of a context change to the

evaluation result of a constraint, we have to distinguish two cases (already knowing205

the truth value of a certain formula vs. not knowing yet). Such treatment appears only

during the impact analysis, and will not affect final truth values. Thus, truthvalue here

is either a specific truth value (T or F) or a unknown truth value (U).

Then all context changes can be partitioned into four cases: <+, 𝐶 , U>, <−, 𝐶 , T>,

<−, 𝐶 , F>, and <−, 𝐶 , U>. Here, <+, 𝐶 , U> denotes an addition change to context 𝐶 ,210

with its associated formula not evaluated yet (U: Unevaluated); <−, 𝐶 , T> denotes a

deletion change to context𝐶 , with its associated formula previously evaluated to True

(T: True; F: False). For example, consider constraint ∀𝑣 ∈ 𝐶 (𝑏𝑓 𝑢𝑛𝑐 (𝑣)) and context

𝐶 = {r1, r2} as illustrated in Fig. 4 (truth values annotated). The impact of any addition

change (e.g., <+, 𝐶 , r3>) can be represented by <+, 𝐶 , U> since the newly element r3215

has not been evaluated yet for 𝑏𝑓 𝑢𝑛𝑐 . The impact of a deletion change has three cases

according to the previous truth value of the element to delete for 𝑏𝑓 𝑢𝑛𝑐: (1) <−, 𝐶 ,

T>, if the element to delete has been evaluated to True, e.g., <−, 𝐶 , r2>; (2) <−, 𝐶 , F>,

if the element has been evaluated to False, e.g., <−, 𝐶 , r1>; (3) <−, 𝐶 , U>, when the

element is just added and has not been evaluated yet, e.g., <−, 𝐶 , r3>.220

We note that only universal and existential formulas are associated with contexts

in consistency constraints, and thus context changes directly affect such formulas

(named base formulas). Consider our preceding constraint Sloc (Section 2.1). Change

<−, 𝐶y, r2> directly affects the constraint’s existential quantifier part (∃𝑣y ∈ 𝐶y) and

10

Figure 4: Example of a universal formula

Table 1: Base impact

Context change ∀𝑣 ∈ 𝐶 (𝑓) ∃𝑣 ∈ 𝐶 (𝑓)

<+, 𝐶 , U> {mTT, mTF, mFF} {mTT, mFT, mFF}

<−, 𝐶 , T> {mTT, mFF} {mTT, mTF}

<−, 𝐶 , F> {mFT, mFF} {mTT, mFF}

<−, 𝐶 , U> {mTT, mFT, mFF} {mTT, mTF, mFF}

makes formula ∃𝑣y ∈ 𝐶y (Same(𝑣x, 𝑣y)) its base formula. In our illustrative example225

in Fig. 1, chg1, chg3 and chg4 are three addition changes and all belong to the impact

case <+, 𝐶x, U> or <+, 𝐶y, U>. Suppose that the constraint has been evaluated on 𝑃0.

Then chg2 belongs to the case of <−, 𝐶y, F> and chg5 belongs to <−, 𝐶x, U>.

Next we analyze how a context change produces its impact (a.k.a. base impact) to

the concerned base formula, and then track the impact to the whole constraint (a.k.a.230

overall impact) containing this formula.

The base impact has four kinds, namely, mTT, mTF, mFT, and mFF, representing

the truth value of a formula keeping True, changing from True to False, from False

to True, and keeping False, respectively. Table 1 lists all base impacts that can be

produced by each particular context change to each possible base formula. Take the235

universal formula∀𝑣 ∈ 𝐶 (𝑓) as an example. Change <+,𝐶 ,U> can produce all impacts

except mFT, because adding an element into a context can never make the universal

formula evaluated from False to True, while <−,𝐶 , T> can produce onlymTT andmFF,

because deleting an element from a context with truth value of True can never make

the universal formula evaluated from True to False or from False to True. Other cases240

can be explained similarly.

11

Then we follow the tracking rules in Fig. 5 to decide how the overall impact of a

particular context change on a consistency constraint depends on the base impact of

this change on its associated base formula.

Take universal formula 𝑔 := ∀𝑣 ∈ 𝐶 (𝑓) for example. We consider all four impacts:245

(1) if a change has impactmTT on 𝑓 , it leads to𝑔 remaining its previous truth value, i.e.,

having impact mTT or mFF; (2) if the change has impact mTF, it can cause 𝑔 evaluated

to False, i.e., having impact mTF or mFF; (3) if the change has impact mFF, it makes 𝑔

keep evaluated to False, i.e., having impact mFF; (4) if the change has impact mFT, it

can cause 𝑔 to keep evaluated to False or from False to True, i.e., having impact mFF250

ormFT. Combining all cases together, the impact on the universal formula 𝑔 should be

impact(𝑓) ∪{mFF}. Recursively, one can continue to track the impact down to formula

𝑓 . If the tracking already reaches the base formula the specific change concerns, then

the tracking can terminate with the associated base impact. Other tracking rules can

be explained similarly.255

For example, consider context change chg1 = <+,𝐶y, r3> in Fig. 1. We model it by

<+, 𝐶y, U>, and analyze its overall impact on constraint Sloc as follows:

impact(chg1,∀𝑣x ∈ 𝐶x (not(∃𝑣y ∈ 𝐶y (Same(𝑣x, 𝑣y)))))

= impact(chg1, not(∃𝑣y ∈ 𝐶y (Same(𝑣x, 𝑣y)))) ∪ {mFF}

= flipSet(impact(chg1, ∃𝑣y ∈ 𝐶y (Same(𝑣x, 𝑣y)))) ∪ {mFF}

= flipSet(base_impact(chg1, ∃)) ∪ {mFF}

= flipSet({mTT,mFT,mFF}) ∪ {mFF}

= {mFF,mTF,mTT}

After analyzing the overall impact of a context change, we dynamically update

the evaluation situation of the formulas directly or indirectly affected by this context

change, in order to model its next context change precisely. For example, consider the

context pool 𝑃0 in Fig. 1, the universal formula associated with r1 and the existential

formula associated with r2 are both evaluated as True because there is no inconsis-260

tency. After analyzing context change chg1 = <+, 𝐶y, r3>, the existential formula

associated with r3 is unevaluated, changing the evaluation of universal formula asso-

12

Auxiliary functions :

− impact, where impact(𝑐ℎ𝑔, 𝑓) refers to 𝑐ℎ𝑔’s impact on 𝑓 .

− base_impact, where base_impact(𝑐ℎ𝑔, ∃/∀) follows Table 1.

− flip, where flip(mTT) := mFF; flip(mFF) := mTT; flip(mTF) := mFT;

flip(mFT) := mTF;

− flipSet, where flipSet(𝑀) := {flip(𝑚) |𝑚 ∈ 𝑀}.

Tracking rules :

− impact(𝑐ℎ𝑔,∀𝑣 ∈ 𝐶 (𝑓)) =

(1) base_impact(𝑐ℎ𝑔,∀), when 𝑐ℎ𝑔 affects 𝐶,

(2) impact(𝑐ℎ𝑔, 𝑓) ∪ {mFF}, when 𝑐ℎ𝑔 affects 𝑓 ;

− impact(𝑐ℎ𝑔, ∃𝑣 ∈ 𝐶 (𝑓)) =

(1) base_impact(𝑐ℎ𝑔, ∃), when 𝑐ℎ𝑔 affects 𝐶,

(2) impact(𝑐ℎ𝑔, 𝑓) ∪ {mTT}, when 𝑐ℎ𝑔 affects 𝑓 ;

− impact(𝑐ℎ𝑔, not (𝑓)) = flipSet(impact(𝑐ℎ𝑔, 𝑓));

− impact(𝑐ℎ𝑔, (𝑓1) and (𝑓2)) =

(1) impact(𝑐ℎ𝑔, 𝑓1) ∪ {mFF}, when 𝑐ℎ𝑔 affects 𝑓1,

(2) impact(𝑐ℎ𝑔, 𝑓2) ∪ {mFF}, when 𝑐ℎ𝑔 affects 𝑓2;

− impact(𝑐ℎ𝑔, (𝑓1) or (𝑓2)) =

(1) impact(𝑐ℎ𝑔, 𝑓1) ∪ {mTT}, when 𝑐ℎ𝑔 affects 𝑓1,

(2) impact(𝑐ℎ𝑔, 𝑓2) ∪ {mTT}, when 𝑐ℎ𝑔 affects 𝑓2;

− impact(𝑐ℎ𝑔, (𝑓1) implies (𝑓2)) =

(1) flipSet(impact(𝑐ℎ𝑔, 𝑓1)) ∪ {mTT}, when 𝑐ℎ𝑔 affects 𝑓1,

(2) impact(𝑐ℎ𝑔, 𝑓2) ∪ {mTT}, when 𝑐ℎ𝑔 affects 𝑓2.

Figure 5: Tracking rules

13

ciated with r1 from True to unevaluated. In this way, the overall impacts of changes

chg2, chg3, chg4, and chg5 in Fig. 1 can be obtained similarly, i.e., {mTT, mFF}, {mTT,

mTF, mFF}, {mTT, mTF, mFF}, and {mTT, mFT, mFF}.265

Step 2: Validity criterion derivation. With analyzed impacts of context changes,

we proceed to classify them into three categories according to how they affect the de-

tection of context inconsistencies.

Definition 1 (inc-exposing change). Given a consistency constraint 𝑠 , if the over-

all impact of a context change contains mTF but no mFT, it is an inc-exposing change (or270

E-change), suggesting possibly exposing a new inconsistency for 𝑠 .

Definition 2 (inc-hiding change). Given a constraint 𝑠 , if the overall impact of

a change contains mFT but no mTF, it is an inc-hiding change (or H-change), suggesting

possibly hiding an existing inconsistency for 𝑠 .

Definition 3 (inc-irrelevant change). Given a constraint 𝑠 , if the overall impact275

of a change contains neither mFT nor mTF, it is an inc-irrelevant change (or I-change),

suggesting irrelevant to detecting any inconsistency.

Note that no context change has both typesmFT andmTF, since (1) any base impact

contains at most one such type (Table 1), and (2) tracking rules never breaks this

property (Fig. 5). Therefore, E-change, H-change, and I-change are complete.280

Based on the above definitions, if a constraint checking task contains any ordered

E-change (withmTF) and H-change (withmFT) pair in its sequence of context changes,

it is invalid to check these changes as a whole (i.e., inconsistency possibly hidden).

Based on this observation, we derive our validity criterion as follows:

Definition 4 (Validity criterion). Given a constraint checking task with a se-285

quence of context changes, if the sequence contains any ordered E-change and H-change

pair (either contiguous or not), it is an invalid task; otherwise, valid.

Consider our preceding illustrative example in Fig. 1. Context changes chg1 (<+,

𝐶y, U>), chg3 (<+, 𝐶y, U>), and chg4 (<+, 𝐶x, U>) all have the mTF impact (i.e., E-

change), change chg5 (<−, 𝐶y, U>) has the mFT impact (i.e., H-change), and the re-290

maining change chg2 has neither of them (i.e., I-change).

Then, consider two tasks: 𝑇1 = (chg1, chg2, chg3, chg4, chg5), and𝑇2 = (chg1, chg2,

chg3, chg4). 𝑇1 contains an E-change and H-change (chg5) pair, thus invalid. 𝑇2 does

14

Algorithm 1: Task arrangement
Input : set of consistency constraints 𝑆 , new context change 𝑐ℎ𝑔𝑛𝑒𝑤

Output: set of consistency constraints 𝑆 (updated)

1 for each 𝑠 ∈ 𝑆 do

2 𝑝 = impact (𝑐ℎ𝑔𝑛𝑒𝑤 , 𝑠);

3 if 𝑝 contains mFT then

4 𝑐ℎ𝑔𝑛𝑒𝑤 .𝑡𝑦𝑝𝑒 = H-change;

5 else if 𝑝 contains mTF then

6 𝑐ℎ𝑔𝑛𝑒𝑤 .𝑡𝑦𝑝𝑒 = E-change;

7 else

8 𝑐ℎ𝑔𝑛𝑒𝑤 .𝑡𝑦𝑝𝑒 = I-change;

9 if 𝑐ℎ𝑔𝑛𝑒𝑤 .𝑡𝑦𝑝𝑒 == H-change then

10 for each change 𝑐ℎ𝑔 in 𝑠 .𝑇𝑎𝑠𝑘 do

11 if 𝑐ℎ𝑔.𝑡𝑦𝑝𝑒 == E-change then

12 fusionchecking(𝑠 .𝑇𝑎𝑠𝑘 , 𝑠);

13 𝑠 .𝑇𝑎𝑠𝑘 .clear();

14 break;

15 𝑠 .𝑇𝑎𝑠𝑘 ← append(𝑐ℎ𝑔𝑛𝑒𝑤);

16 return 𝑆 ;

not contain any such pair, thus valid. The results match our earlier analysis in Sec-

tion 2.2.295

Step 3: Task arrangement. With the above validity criterion, INFuse can com-

pose constraint checking tasks with valid context changes only.

Algorithm 1 explains how to arrange valid constraint checking tasks. Given a

consistency constraint 𝑠 , when context change 𝑐ℎ𝑔𝑛𝑒𝑤 is collected, INFuse first ana-

lyzes its impact on 𝑠 to decide its category (Lines 2–8), i.e., E-/H-/I-change. Then, if300

𝑐ℎ𝑔𝑛𝑒𝑤 is an H-change, INFuse examines whether there is any existing E-change 𝑐ℎ𝑔

in the current task. If yes (Line 11), INFuse conducts fusion checking with all existing

15

changes in the task (details to be discussed later in the HOW-TO-CHECK part) (Line

12), and finishes this task (𝑠’s new task starts with 𝑐ℎ𝑔𝑛𝑒𝑤 , Lines 13–14). Otherwise,

INFuse keeps maximizing a constraint checking task until any possible E-change and305

H-change pair occurs.

We give the following theorem to guarantee that INFuse always returns the same

checking result by its whole checking of thus arranged tasks, as compared to individ-

ual checking.

Theorem 1 (WHAT-Correctness). Given any consistency constraint and associated310

context pool, INFuse produces the same result for its arranged valid context changes, no

matter it checks these changes as a whole or individually.

Proof. Let the concerned constraint be 𝑠 with the associated context pool 𝑃0. IN-

Fuse’s arranged valid context changes compose a constraint checking task𝑇 = (𝑐ℎ𝑔1,

· · · , 𝑐ℎ𝑔𝑛). 𝑃𝑖 represents the context pool right after applying context change 𝑐ℎ𝑔𝑖 .315

As discussed in Section 2.3, in order to prove this WHAT-Correctness theorem, we

actually aim to prove:

chk(𝑃𝑛, 𝑠) =
𝑛⋃
𝑖=1

chk(𝑃𝑖 , 𝑠) (3)

To get Equation (3), one can prove that checking results for 𝑃0, . . . , 𝑃𝑛−1 are all

subsets of the checking result for the checking result for 𝑃𝑛 . This target (i.e., the

following Equation (4)) serves as a sufficient condition for Equation (3), i.e.,320

𝑛−1⋃
𝑖=1

chk(𝑃𝑖 , 𝑠) ⊆ chk(𝑃𝑛, 𝑠) (4)

We use reduction to absurdity by assuming that Equation (4) does not hold. That

is, there is an 𝑖𝑛𝑐𝑥 satisfying:

𝑖𝑛𝑐𝑥 ∈ (
𝑛−1⋃
𝑖=1

chk(𝑃𝑖 , 𝑠)) \ chk(𝑃𝑛, 𝑠) (5)

Suppose 𝑖𝑛𝑐𝑥 is first exposed by 𝑐ℎ𝑔 𝑗 (1 ≤ 𝑗 < 𝑛), i.e., 𝑖𝑛𝑐𝑥 ∈ chk(𝑃 𝑗 , 𝑠) and

𝑖𝑛𝑐𝑥 ∉ chk(𝑃 𝑗−1, 𝑠). Due to our definition of E/H/I-changes, 𝑐ℎ𝑔 𝑗 is an E-change.

Moreover, since 𝑖𝑛𝑐𝑥 ∉ chk(𝑃𝑛, 𝑠), it should be hidden no later than 𝑐ℎ𝑔𝑛 is applied and325

16

checked. Suppose 𝑖𝑛𝑐𝑥 is actually hidden by 𝑐ℎ𝑔𝑘 (𝑗 < 𝑘 ≤ 𝑛), i.e., 𝑖𝑛𝑐𝑥 ∉ chk(𝑃𝑘 , 𝑠).

By definition, 𝑐ℎ𝑔𝑘 must be an H-change. Therefore, we can derive that:

𝑖𝑛𝑐𝑥 ∈ chk(𝑃 𝑗 , 𝑠), (6)

𝑖𝑛𝑐𝑥 ∉ chk(𝑃𝑘 , 𝑠). (7)

This actually denotes that 𝑖𝑛𝑐𝑥 was first exposed by an E-change 𝑐ℎ𝑔 𝑗 , and then

hidden by a H-change 𝑐ℎ𝑔𝑘 , which clearly violates the nonexistence of an ordered330

E-change and H-change in any constraint checking task according to the validity cri-

terion (Definition 4). Therefore, this leads to a contradiction to our assumption, so

Equation (4) holds and thus Equation (3) can be easily proved as such. This completes

our proof. □

In the following, we explain how INFuse fuses incremental and concurrent check-335

ing to efficiently and soundly handle valid context changes in each task.

3.3. HOW-TO-CHECK: Check Fusion

Given a valid constraint checking task, INFuse fuses incremental and concurrent

checking and treats all context changes in the task as a whole for efficiency. INFuse

first decomposes all changes in a task into several subsets based on their nature, and340

then conducts constraint checking by two steps, namely, truth value evaluation and

link generation, which examines whether the concerned consistency constraint is vi-

olated and why the violation, if any, occurs.

Step 4: Task decomposition. INFuse first decomposes all context changes (ad-

dition or deletion) in the given constraint checking task into three subsets, namely,345

truly added set (or 𝐴𝑆𝑒𝑡 for short), truly deleted set (𝐷𝑆𝑒𝑡) and updated set (𝑈𝑆𝑒𝑡) for

each consistency constraint. They contain truly added elements (i.e., not deleted later),

truly deleted elements (not added back later) and updated elements (i.e., deleted first

and added back), respectively. Suppose that context 𝐶 eventually becomes 𝐶′ after

applying all relevant changes in task𝑇 . Then the three sets can be calculated: 𝐴𝑆𝑒𝑡 =350

𝐶′ \ 𝐶 , 𝐷𝑆𝑒𝑡 = 𝐶 \ 𝐶′, and𝑈𝑆𝑒𝑡 = {𝑒 |𝑒 ∈ 𝐶 ∩𝐶′ ∧ ∃ 𝑐ℎ𝑔 ∈ 𝑇 (𝑐ℎ𝑔 =< +/−,𝐶, 𝑒 >)}.

We define the Affected function to indicate whether a formula itself or its sub-

formula is affected by the context changes in a constraint checking task. Given a

17

𝜏
partial

[∀𝑣 ∈ 𝐶 (𝑓)]𝛼 =

(1) 𝜏0 [∀𝑣 ∈ 𝐶 (𝑓)]𝛼 , if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(2) 𝜏0 [∀𝑣 ∈ 𝐶 (𝑓)]𝛼 ∧ 𝑡1 ∧ · · · ∧ 𝑡𝑎,where (𝑡1, · · · , 𝑡𝑎) = evalentire (𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡),

if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 ≠ ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(3) T ∧ 𝜏0 [𝑓]bind((𝑣,𝑥1),𝛼) ∧ · · · ∧ 𝜏0 [𝑓]bind((𝑣,𝑥𝑛−𝑎−𝑢),𝛼) ∧ 𝑡1 ∧ · · · ∧ 𝑡𝑎+𝑢 | 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡)),

where (𝑡1, · · · , 𝑡𝑎+𝑢) = evalentire (𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡),

if Affected(𝑓) = F and (𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).

(4) T ∧ 𝑡1 ∧ · · · ∧ 𝑡𝑛,where (𝑡1, · · · , 𝑡𝑛) = eval
partial

(𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(5) T ∧ 𝑡1 ∧ · · · ∧ 𝑡𝑛,where (𝑡1, · · · , 𝑡𝑎+𝑢) = evalentire (𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡)

and (𝑡𝑎+𝑢+1, · · · , 𝑡𝑛) = eval
partial

(𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡)),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 ≠ ∅ or 𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).
Figure 6: INFuse’s partial truth value evaluation semantics for the universal formula

formula from a consistency constraint, the Affected function returns T (means True)

if and only if the formula itself or its subformula references a context involved in the355

𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 or𝑈𝑆𝑒𝑡 associated with this constraint; otherwise, F (means False).

INFuse would rely on the three subsets to decide when to switch between incre-

mental checking (by partial checking semantics later) and concurrent checking (by

entire checking semantics later). The checking is composed of the truth value evalua-

tion (returning T or F) and link generation (returning links [12]). The following gives360

an example link for our preceding inconsistency detected in the illustrative example

(more explanation about link is given later in Step 6): (violated, {(𝑣x = r3), (𝑣y = r3)}).

Step 5: Truth value evaluation. We use 𝜏INFuse [𝑠] to represent INFuse’s truth

value evaluation on consistency constraint 𝑠 . 𝜏INFuse starts with incremental checking

by invoking its partial checking semantics, i.e., 𝜏INFuse [𝑠] = 𝜏partial [𝑠]𝛼 . Here, 𝛼 is the365

variable assignment, which is empty at the beginning and updated later by the bind

function when evaluating universal or existential subformula in constraint 𝑠 to add

new variable bindings into 𝛼 . In the following, we take the universal formula as an

example to explain INFuse’s truth value evaluation. A full treatment of all formula

types is accessible at our appendix.370

18

𝜏entire [∀𝑣 ∈ 𝐶 (𝑓)]𝛼 = T ∧ 𝜏entire [𝑓]bind((𝑣,𝑥1),𝛼) ∧ · · · ∧ 𝜏entire [𝑓]bind((𝑣,𝑥𝑛),𝛼) |𝑥𝑖 ∈ 𝐶
Figure 7: INFuse’s entire truth value evaluation semantics for the universal formula

evalentire (𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝑆𝑒𝑡) =

(1) 𝜏entire [𝑓]bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ 𝜏entire [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

if ∀𝑣 ∈ 𝐶 (𝑓) is a concurrent point;

(2) 𝜏entire [𝑓]bind((𝑣,𝑥1),𝛼) ; · · · ; 𝜏entire [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

eval
partial

(𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝑆𝑒𝑡) =

(1) 𝜏
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ 𝜏partial [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

if ∀𝑣 ∈ 𝐶 (𝑓) is a concurrent point;

(2) 𝜏
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ; · · · ; 𝜏partial [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

Figure 8: Semantics of the eval functions (entire and partial checking)

Consider universal formula ∀𝑣 ∈ 𝐶 (𝑓). Suppose that all context changes in a

constraint checking task have been decomposed into related 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , and 𝑈𝑆𝑒𝑡 .

Fig. 6 gives INFuse’s partial truth value evaluation semantics (five cases).

(1) If no change affects the universal formula or its subformula, then this formula’s

previous truth value 𝜏0 is reusable.375

(2) If the changes affect the universal formula only by adding new elements into

context 𝐶 only, then this formula’s previous truth value 𝜏0 is reusable, and one

can update it with evaluation results of the new elements from 𝐴𝑆𝑒𝑡 , by the

evalentire function in Fig. 8 and 𝜏entire semantics in Fig. 7 (“entire” due to new el-

ements (no reusable results); concurrent evaluations may be applied (explained380

later)).

(3) If the changes affect the universal formula only by deleting existing elements

from, or updating them in, context𝐶 , then the evaluation results of the remain-

ing elements in 𝐶 (i.e., 𝐶 \(𝐴𝑆𝑒𝑡 ∪ 𝑈𝑆𝑒𝑡)) are reusable, and those of the other

elements should be calculated by the evalentire function similarly.385

19

(4) If the changes affect the subformula only, then the evaluation results of all ele-

ments in 𝐶 should be updated by the evalpartial function in Fig. 8 (“partial” due

to elements not changed (some reusability possible)).

(5) Otherwise, the changes affect both the universal formula and its subformula,

then one has to update the evaluation results of unchanged elements (i.e.,𝐶 \(𝐴𝑆𝑒𝑡∪390

𝑈𝑆𝑒𝑡)) by the evalpartial function and those of changed elements ((𝐴𝑆𝑒𝑡∪𝑈𝑆𝑒𝑡))

by the evalentire function.

We note that in the evalentire and the evalpartial functions, concurrent checking can

be applied to conduct parallel evaluations as in Fig. 8 (“∥” means concurrent and “;”

means sequential), since these evaluations are independent of each other.395

Concurrent points are the places where concurrent checking starts with multi-

threading support. As illustrated in Fig. 8 and later Fig. 11, concurrent points are

associated with universal or existential formulas, as their subformulas would incur

similar checking workloads. Consider our preceding consistency constraint Sloc and a

checking task𝑇 = (chg1, chg2, chg3, chg4). These changes affect both the constraint’s400

universal formula (i.e., ∀𝑣𝑥 ∈ 𝐶𝑥) and its inner existential formula (i.e., ∃𝑣𝑦 ∈ 𝐶𝑦) in

Sloc. They are both concurrent point candidates for starting concurrent checking. We

will discuss how to decide proper concurrent points later in Section 3.4.

Step 6: Link generation. Similarly, link generation LINFuse [𝑠] in INFuse starts

with incremental checking by invoking its partial checking semantics, i.e.,LINFuse [𝑠] =405

Lpartial [𝑠]𝛼 .

Links are generated to explain why a consistency constraint has been violated

or satisfied, in a form of (linkType, variable assignments). The linkType is violated

or satisfied, corresponding to the evaluated truth value of False or True, and variable

assignments disclose that the violation or satisfaction occurs under what kind of vari-410

able bindings. Recalling our preceding example of link (violated, {(𝑣x, r3), (𝑣y, r3)}), it

means that the preceding constraint Sloc is violated when variable 𝑣x and variable 𝑣y

are both assigned with r3. Similarly, Fig. 9 gives INFuse’s partial link generation se-

mantics for the universal formula (five cases simiplified; a full treatment of all formula

types is accessible at our appendix).415

20

L
partial

[∀𝑣 ∈ 𝐶 (𝑓)]𝛼 =

(1) L0 [∀𝑣 ∈ 𝐶 (𝑓)]𝛼 , if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(2) L0 [∀𝑣 ∈ 𝐶 (𝑓)]𝛼 ∪ ({(violated, {𝑣,𝑦1})} ⊗ 𝑙1) ∪ · · · ∪ ({(violated, {𝑣,𝑦𝑎′ })} ⊗ 𝑙𝑎′),

where (𝑙1, · · · , 𝑙𝑎′) = gen
entire
(L[𝑓]

bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∧ 𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) = F),

if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 ≠ ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(3) ({(violated, {𝑣,𝑦1})} ⊗ 𝑙1) ∪ · · · ∪ ({(violated, {𝑣,𝑦𝑎′+𝑢′ })} ⊗ 𝑙𝑎′+𝑢′)∪

{𝑙 | 𝑙 ∈ {(violated, {(𝑣, 𝑥𝑖)})} ⊗ L0 [𝑓]bind((𝑣,𝑥𝑖),𝛼) }| 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡) ∧ 𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) = F,

where (𝑙1, · · · , 𝑙𝑎′+𝑢′) = gen
entire
(L[𝑓]

bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡 ∧ 𝜏 [𝑓]
bind((𝑣,𝑦 𝑗),𝛼) = F),

if Affected(𝑓) = F and (𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).

(4) ∅ ∪ ({(violated, {𝑣, 𝑥1})} ⊗ 𝑙1) ∪ · · · ∪ ({(violated, {𝑣, 𝑥𝑛′ })} ⊗ 𝑙𝑛′),

where (𝑙1, · · · , 𝑙𝑛′) = gen
partial

(L[𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = F),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(5) ∅ ∪ ({(violated, {𝑣,𝑦1})} ⊗ 𝑙1) ∪ · · · ∪ ({(violated, {𝑣,𝑦𝑛′ })} ⊗ 𝑙𝑛′),

where (𝑙1, · · · , 𝑙𝑎′+𝑢′) = gen
entire
(L[𝑓]

bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡 ∧ 𝜏 [𝑓]
bind((𝑣,𝑦 𝑗),𝛼) = F)

and (𝑙𝑎′+𝑢′+1, · · · 𝑙𝑛′) = gen
partial

(L[𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡) ∧ 𝜏 [𝑓]

bind((𝑣,𝑥𝑖),𝛼) = F),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 ≠ ∅ or 𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).
Figure 9: INFuse’s partial link generation semantics for the universal formula

Lentire [∀𝑣 ∈ 𝐶 (𝑓)]𝛼 =

{𝑙 | 𝑙 ∈ {(violated, {(𝑣, 𝑥𝑖)})} ⊗ Lentire [𝑓]bind((𝑣,𝑥𝑖),𝛼) } | 𝑥𝑖 ∈ 𝐶 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = F) .
Figure 10: INFuse’s entire link generation semantics for the universal formula

(1) If no change affects the universal formula or its subformula, this formula’s pre-

vious link result L0 is reusable.

(2) If the changes affect the universal formula only by adding new elements, this

formula’s previous link result L0 is reusable and one can update it with the

link results of the new elements, by the gen
entire

function in Fig. 11 and Lentire420

semantics in Fig. 10. Here, the ⊗ operator concatenates the base link set of the

universal formula (i.e., {(violated, {𝑣,𝑦 𝑗 })} and link set generated by the subfor-

mula (i.e., 𝑙 𝑗) by applying a Concatenate function to the link pairs formed by

link (violated, {𝑣,𝑦 𝑗 }) and every link from 𝑙 𝑗 . The Concatenate function com-

21

genentire (L[𝑓]bind((𝑣,𝑥𝑖),𝛼) |𝑥𝑖 ∈ 𝑆𝑒𝑡 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = F)

(1) Lentire [𝑓]bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ Lentire [𝑓]entire((𝑣,𝑥𝑠),𝛼) ,

if ∀𝑣 ∈ 𝐶 (𝑓) is a concurrent point.

(2) Lentire [𝑓]bind((𝑣,𝑥1),𝛼) ; · · · ; Lentire [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

gen
partial

(L[𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝑆𝑒𝑡 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = F)

(1) L
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ Lpartial

[𝑓]
bind((𝑣,𝑥𝑠),𝛼) ,

if ∀𝑣 ∈ 𝐶 (𝑓) is a concurrent point.

(2) L
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ; · · · ; Lpartial

[𝑓]
bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

Figure 11: Semantics of the gen functions (entire and partial checking)

bines the two links with the same linkType into a new link, which consists of425

this linkType and the union of all concerned variable assignments from the two

links. Their formal definitions can be found in the Appendix.

(3) If the changes affect the universal formula only by deleting or updating existing

elements, the link results of the remaining elements are reusable, and those of

the other elements should be calculated by the gen
entire

function similarly.430

(4) If the changes affect the subformula only, the link results of all elements should

be updated by the gen
partial

function in Fig. 11.

(5) Otherwise, the changes affect both the universal formula and its subformula,

one has to update the link results of unchanged elements by the gen
partial

func-

tion and those of changed elements by the gen
entire

function.435

Similarly, the gen
entire

and gen
partial

functions canwork concurrently for efficiency

at concurrent points. In the following, we give the second theorem to guarantee that

INFuse soundly fuses incremental and concurrent checking semantics.

Theorem 2 (HOW-Correctness). Given any consistency constraint and associated

context pool, INFuse produces the same result by its check fusion semantics, as existing440

constraint checking techniques do.

22

Proof. Since the semantic structures of true value evaluation and link generation are

highly consistent, we only give our proof when it comes to the truth value semantics.

We here prove INFuse’s checking correctness of truth value evaluation semantics for

all seven formulas in detail.445

Universal formula. We would rely on the checking correctness of ECC, Con-C,

and PCC, and thus, we explain their truth value evaluation semantics for universal

formula briefly here.

Let the universal formula be ∀𝑣 ∈ 𝐶 (𝑓) and 𝐶 contains 𝑚 elements (𝑒1, · · · , 𝑒𝑚)

after applying a context change 𝑐ℎ𝑔. The truth value 𝜏 of the universal formula is450

defined as the conjunction of truth values (𝑡1, · · · , 𝑡𝑚) of subformula 𝑓 for all elements

in 𝐶 . ECC evaluates each 𝑡𝑖 in a sequential manner while Con-C evaluates each 𝑡𝑖

concurrently. PCC considers the effect of 𝑐ℎ𝑔, which can be split into four cases: (a)

if 𝑐ℎ𝑔 did not affect the formula at all, each 𝑡𝑖 would remain unchanged, as well as

𝜏 . (b) if 𝑐ℎ𝑔 added the element 𝑒𝑚 into 𝐶 , 𝑡1, · · · , 𝑡𝑚−1 would remain unchanged, and455

thus, 𝜏 would be the conjunction of its last value and 𝑡𝑚 asscociated with 𝑒𝑚 . (c) if

𝑐ℎ𝑔 deleted the element 𝑒𝑚+1 from 𝐶 , 𝑡1, · · · , 𝑡𝑚 would remain unchanged, and thus,

𝜏 would be the conjunction of them. (d) if 𝑐ℎ𝑔 affected another context related to 𝑓 ,

then all 𝑡𝑖 would need to be reevaluated partially in a similar manner.

We now analyze INFuse’s truth value evaluation semantics for universal formula460

to prove its correctness. Firstly, the correctness of the entire semantics as shown in

Fig. 7 is similarly guaranteed by the correctness of ECC’s semantics due to their sim-

ilarity. Secondly, Con-C’s correctness confirms that evaluating truth values concur-

rently for independent elements can get the same results as evaluating serially, which

guarantees the correctness of evalentire and evalpartial. Therefore, we only specifically465

analyze the correctness concerning cases of the partial semantics in Fig. 6:

• Case (1) is exactly the same as case (a) in PCC since it only focuses on whether

the whole formula is affected.

• Case (2) extends the idea of case (b) in PCC to multiple context changes. These

context changes only added elements (𝑦1, · · · , 𝑦𝑎) in𝐶 . Therefore, the last truth470

value (𝜏0) is reusable according to case (b) in PCC. The correctness of new truth

23

values (𝑡1, · · · , 𝑡𝑎) associated with new elements are guaranteed by evalentire.

• Case (3) fuses the idea of case (b) and case (c) in PCC and extends to multiple

context changes. Truth values associated with elements that were not deleted

or updated by forthcoming context changes are reusable according to case (c)475

in PCC. The correctness of new truth values (𝑡1, · · · , 𝑡𝑎+𝑢) associated with new

or updated elements are also guaranteed by evalentire.

• Case (4) is exactly the same as case (d) in PCC, since it only focuses on whether

subformula 𝑓 is affected when 𝐶 is not affected.

• Case (5) fuses the idea of case (b), case (c), and case (d) in PCC and extends to480

multiple context changes. The correctness of truth values (𝑡1, · · · , 𝑡𝑎+𝑢) associ-

ated with new elements or updated elements are guaranteed by evalentire. Truth

values (𝑡𝑎+𝑢+1, · · · , 𝑡𝑛) associatedwith elements that were not deleted or updated

should be reevaluated partially since subformula 𝑓 is affected according to case

(d) in PCC. their correctness are guaranteed by evalpartial.485

Existential formula. Since INFuse’s truth value evaluation semantics for the ex-

istential formula is quite similar to that for the universal formula, the correctness of

INFuse’s truth value evaluation semantics for the existential formula can be proved

follow the same procedure, i.e., the correctness of the entire semantics can be guaran-

teed by ECC’s correctness, Con-C’s correctness supports the evalentire and evalpartial490

functions, and the partial semantics can be analyzed similarly.

and, or, and implies formulas. Fig. 12 shows the truth value evaluation seman-

tics for and formula. The correctness of the entire semantics for and formula is trivial

since it evaluates the truth value based on the logic of the formula. As for the partial

semantics, every and formula has two subformulas, each of which could be affected495

by INFuse’s arranged valid context changes. Therefore, INFuse partitions all situation

into four cases. Besides, or and implies formulas can be proved in the same way.

not formula. Fig. 13 shows the truth value evaluation semantics for not formula.

The entire semantics for not formula is straightforward and the partial semantics con-

tain two cases since the subformula of not formula is either affected or not affected.500

24

𝜏entire [(𝑓1) and (𝑓2)]𝛼 = 𝜏entire [𝑓1]𝛼 ∧ 𝜏entire [𝑓2]𝛼

(a) Entire semantics

𝜏
partial

[(𝑓1) and (𝑓2)]𝛼 =

(1) 𝜏0 [(𝑓1) and (𝑓2)]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = F.

(2) 𝜏0 [𝑓1]𝛼 ∧ 𝜏partial [𝑓2]𝛼 , if Affected(𝑓1) = F,Affected(𝑓2) = T.

(3) 𝜏
partial

[𝑓1]𝛼 ∧ 𝜏0 [𝑓2]𝛼 , if Affected(𝑓1) = T,Affected(𝑓2) = F.

(4) 𝜏
partial

[𝑓1]𝛼 ∧ 𝜏partial [𝑓2]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = T.

(b) Partial semantics

Figure 12: INFuse’s truth value evaluation semantics for and formula

𝜏entire [(not (𝑓)]𝛼 = ¬𝜏entire [𝑓]𝛼

(a) Entire semantics

𝜏
partial

[(not (𝑓)]𝛼 =

(1) 𝜏0 [not (𝑓)]𝛼 , if Affected(𝑓) = F.

(2) ¬𝜏
partial

[𝑓]𝛼 , if Affected(𝑓) = T.

(b) Partial semantics

Figure 13: INFuse’s truth value evaluation semantics for not formula

𝜏entire [𝑏𝑓 𝑢𝑛𝑐 (𝑣1, · · · , 𝑣𝑛)]𝛼 = 𝑏𝑓 𝑢𝑛𝑐 (𝑣1, · · · , 𝑣𝑛)

(a) Entire semantics

𝜏partial [𝑏𝑓 𝑢𝑛𝑐 (𝑣1, · · · , 𝑣𝑛)]𝛼 = 𝜏0 [𝑏𝑓 𝑢𝑛𝑐 (𝑣1, · · · , 𝑣𝑛)]𝛼

(b) Partial semantics

Figure 14: INFuse’s truth value evaluation semantics for 𝑏𝑓 𝑢𝑛𝑐 formula

𝑏𝑓 𝑢𝑛𝑐 formula. Fig. 14 shows INFuse’s truth value evaluation semantics for

𝑏𝑓 𝑢𝑛𝑐 formula. 𝑏𝑓 𝑢𝑛𝑐 formula returns its result as we expect in the entire seman-

tics and its last truth value is always reusable since it neither owns any subformula

nor references any context.

Therefore, the correctness of truth value evaluation semantics for all seven for-505

mulas are proved, i.e., INFuse can achieve the same truth values as existing checking

25

techniques. Moreover, the correctness of link generation semantics can be proved

similarly, incurring that INFuse can achieve the same links as existing checking tech-

niques. As a summary, INFuse can achieve the same inconsistency checking results

as existing checking techniques. This completes our proof. □510

In the following, we explain more realization details on both the WHAT-TO-

CHECK part and the HOW-TO-CHECK part, and analyze its algorithmic complexity

with comparisons to existing techniques.

3.4. INFuse Realization Details

The preceding WHAT-TO-CHECK part decides a group of context changes that515

are valid to check together, and the HOW-TO-CHECK part guides how to complete

the truth value evaluation and link generation for this group of context changes by

fusing incremental and concurrent checking together. In the following, we explain

more realization details in the two parts.

For theWHAT-TO-CHECK part, we explain how to enhance our task arrangement520

in practice. Recalling the preceding validity criterion in Definition 4, the basic idea is

that any H-change should not follow an E-change within the same checking task, so

as to avoid any missing inconsistency. In fact, as long as the inconsistency that may

be hidden by the H-change has been reported in the last checking, this change can

still be followed by any E-change without sacrificing the quality of checking results.525

Therefore, by temporarily buffering the context inconsistencies reported in the last

checking, we can ignore such associated H-changes. Therefore, “𝑐ℎ𝑔𝑛𝑒𝑤” should be

reexamined to be an H-change and at the same time do not relate to any element in

the buffered inconsistencies (Line 9 in Algorithm 1), thus enhancing INFuse’s task

arrangement by potentially enlarging more changes in a task in practice.530

For the HOW-TO-CHECK part, we explain how to realize the check fusion con-

cretely. Consider a constraint checking task whose included context changes have

been decomposed into three sets (namely, 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , and 𝑈𝑆𝑒𝑡) for the task’s asso-

ciated consistency constraint. Recalling the preceding INFuse’s semantics in Fig. 8

and Fig. 11, the key point to start the check fusion is to first decide concurrent points535

26

in the constraint. Our intuition is three-folded: (1) the sub-tasks split at concurrent

points should be balanced, and this requirement selects universal (∀) or existential

(∃) formulas to be concurrent point candidates, since their subformulas correspond

to identical formulas but with different variable-value bindings by definition, suggest-

ing similar checking workloads (e.g., the example in Fig. 4); (2) each sub-task should540

contain sufficient checking workload, in order to avoid unnecessarily large concur-

rency management cost, and this requirement selects those higher-layer universal

or existential formulas; (3) the finally decided concurrent points should be those af-

fected by context changes (otherwise, their associated results can be reused according

to the preceding partial checking semantics). We combine these three requirements545

into Algorithm 2, which eventually decides concurrent points to be those top-layer

universal or existential formulas that are affected by context changes (i.e., involving

at least one 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , and 𝑈𝑆𝑒𝑡 , directly or indirectly, according to the preceding

Affected function).

The algorithm analyzes a given consistency constraint 𝑠 in a top-down manner,550

until it finds all necessary concurrent points that can cover all affected formulas inside

this constraint. It starts from the root of the constraint, i.e., its top formula (𝑠 .𝑟𝑜𝑜𝑡),

and explores its subformula(s) to find those first encountered universal or existential

formulas (Line 7) that are affected by context changes (Line 6). The exploration pro-

cess must terminate since each terminal 𝑏𝑓 𝑢𝑛𝑐 is enclosed by at least one universal or555

existential formula. For example, we consider the two preceding constraint examples,

whose tree-alike structures are illustrated in Fig. 2. For a constraint like in Fig. 2a,

if the and formula’s both subformulas ∀𝑣𝑥 ∈ 𝐶𝑥 (𝑓) and ∀𝑣𝑦 ∈ 𝐶𝑦 (𝑓) are affected by

context changes, then both of them are considered as concurrent points; otherwise, if

only one subformula is affected, then it is the only concurrent point. For a constraint560

like in Fig. 2b, if both𝐶𝑥 and𝐶𝑦 are affected by context changes, only the root formula

∀𝑣𝑥 ∈ 𝐶𝑥 (𝑓) is considered as the concurrent point. Then we further consider our pre-

ceding constraint Sloc and its checking task 𝑇 = (chg1, chg2, chg3, chg4). Although

both the universal formula (i.e., ∀𝑣x ∈ 𝐶x) and the existential formula (i.e., ∃𝑣y ∈ 𝐶y)

are affected by these changes, INFuse would select only the universal formula as the565

concurrent point.

27

Algorithm 2: Concurrent points selection
Input : consistency constraint 𝑠

Output: set of 𝑠’s concurrent points 𝑐𝑝𝑆𝑒𝑡

1 𝑐𝑝𝑆𝑒𝑡 = ∅;

2 𝑠𝑡𝑎𝑐𝑘 = emptyStack();

3 𝑠𝑡𝑎𝑐𝑘 .push(𝑠 .𝑟𝑜𝑜𝑡);

4 while 𝑠𝑡𝑎𝑐𝑘 is not empty do

5 𝑓 = 𝑠𝑡𝑎𝑐𝑘 .pop();

6 if Affected(𝑓) == True then

7 if 𝑓 .type == ∀ or 𝑓 .type == ∃ then

8 𝑐𝑝𝑆𝑒𝑡 .add(𝑓);

9 else if 𝑓 .type == and or 𝑓 .type == or or 𝑓 .type == implies then

10 𝑠𝑡𝑎𝑐𝑘 .push(𝑓 .left_subformula);

11 𝑠𝑡𝑎𝑐𝑘 .push(𝑓 .right_subformula);

12 else if 𝑓 .type == not then

13 𝑠𝑡𝑎𝑐𝑘 .push(𝑓 .subformula);

14 return 𝑐𝑝𝑆𝑒𝑡 ;

With concurrent points decided, INFuse proceeds with its fusion checking, fol-

lowing the semantics in Fig. 6 and Fig. 9. INFuse conducts the truth value evaluation

and link generation according to encountered formula types and conditions (affected

function and set value conditions) starting from the constraint’s root formula in a top-570

down manner, to either invoke new calculations or reuse existing results (i.e., entire

or partial checking). During this process, when invoking the eval or gen function in

Fig. 8 and Fig. 11, INFuse would decide whether to start concurrent checking accord-

ing to whether the current formula is a previously decided concurrent point. If yes,

INFuse exploits themulti-threading support to assign each threadwith a sub-task (i.e.,575

checking the concerned subformula with a certain variable assignment). This natu-

rally fuses concurrent checking into entire or partial checking. If no, INFuse simply

28

∀	𝑣! ∈ 𝐶!

not

∃	𝑣" ∈ 𝐶"

𝑠(𝑣! , 𝑣")

(a) Syntax tree

∀	𝑣! ∈ 𝐶!

𝑛𝑜𝑡
𝑟!

∃	𝑣" ∈ 𝐶"

𝑠(𝑣! , 𝑣")𝑠(𝑣! , 𝑣") 𝑠(𝑣! , 𝑣")

𝑛𝑜𝑡
𝑟"

∃	𝑣" ∈ 𝐶"

𝑠(𝑣! , 𝑣")
𝑟# 𝑟" 𝑟# 𝑟"

𝑠: “Same” function

(b) Runtime tree

Figure 15: Syntax and runtime tree examples for the S
loc

constraint

completes sub-tasks sequentially. When all sub-tasks are completed, their results are

merged and propagated to the root formula, following the semantics in Fig. 8 and

Fig. 11. We note that since upon a sub-task is assigned with a dedicated thread, no580

further splitting would be considered for this sub-task, this treatment makes INFuse’s

fusion or incremental and concurrent checking simple and efficient.

3.5. INFuse Complexity Analyses

In the following, we analyze how complex such a fusion checking behaves and

how it is compared to existing incremental and concurrent checking algorithmically.585

To facilitate our complexity analysis, we rely on two notions from the litera-

ture [10, 12, 13] for representing consistency constraints, namely, syntax tree and

runtime tree. The former describes a constraint’s structure in a hierarchical way, as

illustrated in Fig. 15a, representing our preceding constraint Sloc (other partial exam-

ples can be found in Fig. 2). The latter resembles the former except that it clones some590

sub-trees with different value assignments for variables introduced in universal or ex-

istential formulas, as illustrated in Fig. 15b, where context 𝐶x contains r1 and r3, and

𝐶y contains r2 and r3.

We now analyze INFuse’s HOW-TO-CHECK part, which dominates the whole

computational complexity (the WHAT-TO-CHECK part consists of several simple595

runtime type checks only). Consider a given consistency constraint 𝑠 , with its check-

ing task consisting of some context changes. As aforementioned, INFuse decomposes

the task into three sets (i.e., 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , and 𝑈𝑆𝑒𝑡) for each involved context in this

29

constraint, and conducts the fusion checking with decided concurrent points. Let the

number of context changes be𝑚 in this task and the height of constraint 𝑠 be 𝐻 . The600

height denotes the maximum hops from a constraint’s syntax tree’s root node to its

leaf nodes, e.g., the height is three in Fig. 15a. It is easy to observe that the task-

to-set decomposition takes O(𝑚) time, and that the concurrent-point decision takes

O(𝐻) time. In the following, we analyze in detail the complexity of the kernel fusion

checking.605

According to the preceding INFuse’s checking realization, we analyze the com-

plexity for completing the sub-task of each arranged thread starting at a concurrent

point (named concurrent cost), and for merging and propagating intermediate results

from concurrent points up to the root node (namedmerge cost). We have earlier noted

that concurrent points are universal or existential formulas in a constraint, and thus610

they correspond to such nodes in the constraint’s syntax tree. For example, consid-

ering constraint Sloc and its checking task 𝑇 = (chg1, chg2, chg3, chg4), the universal

formula (i.e., ∀𝑣𝑥 ∈ 𝐶𝑥) is the only concurrent point as aforementioned, and thus the

root node in the syntax tree (Fig. 15a) corresponds to this concurrent point. Besides,

according to Algorithm 2, no other concurrent point would exist between a concur-615

rent point and the root node. Therefore, for a syntax tree’s corresponding runtime

tree, its part from concurrent points to the root node would be exactly the same as

that in the syntax tree. This brings two useful properties: (1) any concurrent point

corresponds to a unique node in both the syntax tree and runtime tree, and (2) the

hops from the root node to any concurrent point are no more than O(𝐻), implying620

that the merge cost would be within O(𝐻) time. Here we note that when analyzing

the complexity of constraint checking upon a consistency constraint (fixed) given a

sequence of context changes (not fixed), we are considering the impact of the number

of these changes as well as their types. With this setting, the constraint itself never

changes, and as such we can consider its height in the tree structure is a constant.625

Therefore, we here consider 𝐻 as a constant, and reduce this cost to be O(1) time,

while focusing on the main cost below.

This leaves us the main challenge of analyzing INFuse’s complexity in completing

the sub-task from a concurrent point. Let a considered concurrent point be 𝑐 , and we

30

	𝑐𝑡𝑥!

⋯⋯

	𝑐𝑡𝑥" ⋯⋯

	𝑐𝑡𝑥# ⋯⋯

	𝑐𝑡𝑥$%" ⋯⋯

⋯⋯

⋯⋯

⋯⋯

ℎ!

(a) Parallel structure

	𝑐𝑡𝑥!

	𝑐𝑡𝑥"

⋯⋯

	𝑐𝑡𝑥#

⋯⋯

		𝑐𝑡𝑥$%"

⋯⋯

⋯⋯

ℎ!

(b) Nested structure

Figure 16: Parallel and nested structures in a syntax tree

analyze the averaged time complexity for completing its sub-task for one thread (all630

threads are concurrent).

We consider the sub-tree in constraint 𝑠’s syntax tree with concurrent point 𝑐

as the root node of this sub-tree. Let the height of this sub-tree be ℎ, and it contains

totally𝑘 universal or existential formula nodes, each associated with a specific context

(named 𝑐𝑡𝑥0, · · · , 𝑐𝑡𝑥𝑘−1). For ease of presentation, we let 𝑐’s associated context be635

𝑐𝑡𝑥0, and the other 𝑘 − 1 contexts are ordered in a descending order on their heights

(i.e., descending ℎ𝑖 for 𝑐𝑡𝑥𝑖 , representing the hops from 𝑐𝑡𝑥𝑖 to the lowest leaf node),

as shown in Fig. 16.

To analyze the averaged complexity, we assume for all contexts in 𝑐’s sub-tree,

they: (1) are even distributed (i.e., with different locations and different heights), and640

(2) are even affected by context changes (i.e., with the same probability). For the

former, the average height of all 𝑘 contexts (except 𝑐𝑡𝑥0) is half the sub-tree’s height:

1
𝑘 − 1

𝑘−1∑︁
𝑖=1

ℎ𝑖 =
ℎ

2
. (8)

For the latter, since each context is affected by change (i.e., adding or deleting an

element) always with the same probability, each context (𝑐𝑡𝑥0, · · · , 𝑐𝑡𝑥𝑘−1) contains

the same number (say, 𝑒) of elements.645

Wenote that different constraint structures have different impacts on the complex-

ity analysis. Therefore, we consider two representative structures (i.e., parallel and

nested), as illustrated in Fig. 16. For the former, a context is never within the scope

31

Node 𝑟	𝑐𝑡𝑥!

⋯⋯

	𝑐𝑡𝑥" ⋯⋯

	𝑐𝑡𝑥# ⋯⋯

	𝑐𝑡𝑥$%" ⋯⋯

𝑂(𝑒)

𝑂(𝑒)

𝑂(𝑒)

⋯⋯ ⋯⋯

Figure 17: Runtime tree of the parallel structure

of another context, while for the latter, a context is always within that of a previous

context. We let node 𝑟 be concurrent point 𝑐’s corresponding node in constraint 𝑠’s650

runtime tree, and the sub-tree with 𝑟 as the root node contain 𝑛0 nodes before apply-

ing context changes. Since 𝑐’s associated context 𝑐𝑡𝑥0 contains 𝑒 elements, then each

of 𝑟 ’s sub-tree in the runtime tree contains 𝑛0
𝑒
nodes. In the following, we analyze for

the two structures.

Parallel structure. Consider node 𝑟 (concurrent point 𝑐’s corresponding node in655

the runtime tree) with the parallel structure, as shown in Fig. 17.

In the parallel structure, one can approximate the total number of nodes in one

of 𝑟 ’s sub-trees also by accumulating each context 𝑐𝑡𝑥𝑖 ’s sub-tree’s node number (i.e.,

𝑂 (𝑒 · ℎ𝑖)). We thus have the following equation:

𝑘−1∑︁
𝑖=1

𝑂 (𝑒 · ℎ𝑖) = 𝑂 (𝑛0
𝑒
). (9)

Then, to analyze the averaged time complexity of conducting INFuse’s fusion660

checking for one of 𝑟 ’s sub-trees (all sub-trees are checked concurrently by differ-

ent threads), we consider three representative cases (i.e., only 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , or 𝑈𝑆𝑒𝑡

changes; other cases in between).

(1) Only𝐴𝑆𝑒𝑡 changes. Recalling that each context is even affected by change, thus

all contexts’ corresponding𝐴𝑆𝑒𝑡 should contain the elements for additionwith a665

closemagnitude. Let this number be𝑂 (𝑎). To conduct INFuse’s fusion checking

(i.e., truth value evaluation and link generation), INFuse needs to create 𝑂 (𝑎)

32

new sub-trees for node 𝑟 that require entire checking 𝑐𝑡𝑥0 affected, and adjust

𝑂 (𝑒) sub-trees for node 𝑟 that require partial checking (internal contexts also

affected). To realize such creation and adjustment, INFuse assigns dedicated670

threads, one for each sub-tree of node 𝑟 . Note that adding a new sub-tree is more

time-consuming than adjusting an existing sub-tree since it requires three parts

of jobs (i.e., node creation, truth value evaluation, and link generation), while

adjusting an existing sub-tree requires only the latter two jobs. Therefore, we

analyze the complexity of adding a new sub-tree to represent those for other675

sub-trees (since all are done concurrently, adding a new sub-tree represents the

most complexity). For a newly created sub-tree (with 𝑂 (𝑒 + 𝑎) elements for

each internal context, i.e.,
∑𝑘−1

𝑖=1 ((𝑒 + 𝑎) · ℎ𝑖) nodes in total), each node would

be visited three times for the node creation, truth value evaluation and link

generation respectively. Therefore, the time cost is:680

𝑂 (3 ·
𝑘−1∑︁
𝑖=1
((𝑒 + 𝑎) · ℎ𝑖)) . (10)

Based on earlier derived Equation (9), this can be reduced to:

𝑂 ((3 + 3𝑎
𝑒
)𝑛0
𝑒
). (11)

(2) Only𝑈𝑆𝑒𝑡 changes. Similarly, let the number of elements for update in𝑈𝑆𝑒𝑡 be

𝑂 (𝑢). In this case, INFuse allocates 𝑂 (𝑒) threads to update all 𝑂 (𝑒) sub-trees

of node 𝑟 , in which 𝑂 (𝑢) sub-trees require full updates (updating whole sub-

trees), and the remaining𝑂 (𝑢) sub-trees require partial updates (updating parts685

affected by update changes to internal contexts). Similarly, as handling a full

update is most time-consuming, we analyze its complexity to be representative.

Note that all nodes (𝑂 (𝑛0
𝑒
) for each sub-tree) should be updated and visited

twice, i.e., reevaluating truth values and regenerating links (no node creation

required). Therefore, the time cost is:690

𝑂 (2 · 𝑛0
𝑒
). (12)

(3) Only𝐷𝑆𝑒𝑡 changes. Let the number of elements for deletion in𝐷𝑆𝑒𝑡 be𝑂 (𝑑). In

this case, INFuse allocates 𝑂 (𝑒) threads for all 𝑂 (𝑒) sub-trees of node 𝑟 , where

33

𝑂 (𝑑) sub-trees are whole deleted, and the remaining 𝑂 (𝑒 − 𝑑) sub-trees are

adjusted (some internal parts are deleted). Similarly, handling an adjustment is

most time-consuming, we analyze its complexity to be representative. For a sub-695

tree that requires an adjustment, INFuse needs to: (1) remove 𝑂 (𝑑) branches

for each context node, and (2) then reevaluate the truth value and regenerate

links for each node on paths from a context node to node 𝑟 . The former takes

𝑂 ((𝑘 − 1) ·𝑑) time, and the latter takes𝑂 (2 · 12 ·
∑𝑘−1

𝑖=1 (ℎ−ℎ𝑖)) time, considering

that all paths eventually merge into one in a random, steady way. Therefore,700

the combined time cost is:

𝑂 ((𝑘 − 1) · 𝑑 + 2 · 1
2
·
𝑘−1∑︁
𝑖=1
(ℎ − ℎ𝑖)) . (13)

Based on earlier derived Equation (8) and Equation (9), this can be reduced to:

𝑂 ((2𝑑
𝑒ℎ
+ 1
𝑒
)𝑛0
𝑒
). (14)

Comparing the time costs for the three cases, we observe that cases (1) and (2)

share a comparable complexity (coefficient is a small constant over one), while case

(3) tends to be less complex (coefficient is smaller than one). Considering that in con-705

straint checking, elements to be added, deleted, or updated for a given task typically

occupy only a small proportion of all existing elements, we then have: O(𝑎/𝑢/𝑑)≪O(𝑒).

Therefore, we can conclude for the parallel structure that the 𝐴𝑆𝑒𝑡 case has the most

time complexity, and 𝑈𝑆𝑒𝑡 case has the slightly less time complexity, and the 𝐷𝑆𝑒𝑡

case has the least time complexity.710

Nested structure. We next consider node 𝑟 (concurrent point 𝑐’s corresponding

node in the runtime tree) with the nested tree structure, as shown in Fig. 18. Similarly,

we also assume𝑂 (𝑒) elements in each context, and this makes that each sub-tree from

node 𝑟 is continuously split into 𝑂 (𝑒) branches upon each context node. Therefore,

for context 𝑐𝑡𝑥𝑖 , there would be 𝑂 (𝑒𝑖−1) corresponding context nodes in one of node715

𝑟 ’s sub-tree. To calculate the total number of nodes in one of node 𝑟 ’s sub-trees, we

accumulate to obtain this number by approximating a triangle-alike tree structure:

𝑂 (1
2
· ℎ · 𝑒𝑘−1) = 𝑂 (𝑛0

𝑒
). (15)

34

Node 𝑟	𝑐𝑡𝑥!

⋯⋯

	𝑐𝑡𝑥"
⋯⋯

	𝑐𝑡𝑥#$" 	𝑐𝑡𝑥#$"⋯

	𝑐𝑡𝑥% ⋯ 	𝑐𝑡𝑥%
⋯⋯ ⋯⋯

⋯	𝑐𝑡𝑥#$"

⋯⋯⋯⋯⋯⋯

𝑂(𝑒!"#) nodes

⋯⋯ ⋯⋯

Figure 18: Runtime tree for nested structure

Then, we similarly consider three cases:

(1) Only 𝐴𝑆𝑒𝑡 changes. In this case, similarly adding a whole sub-tree to node 𝑟

would dominate the cost, and thus we analyze this to be representative. All720

nodes in such a sub-tree (with 𝑎 + 𝑒 elements for each context) should be vis-

ited three times (for node creation, truth value evaluation, and link generation).

Therefore, the time cost is:

𝑂 (3 · 1
2
· ℎ · (𝑒 + 𝑎)𝑘−1). (16)

Based on Equation (15), it can be reduced to

𝑂 (3 · (1 + 𝑎
𝑒
)
𝑘−1𝑛0

𝑒
). (17)

(2) Only 𝑈𝑆𝑒𝑡 changes. In this case, similarly fully updating a whole sub-tree to725

node 𝑟 ’s would dominate the cost, and we analyze this. All nodes in such a sub-

tree would be visited twice (node creation not required). Therefore, the time

cost is:

𝑂 (2 · 𝑛0
𝑒
). (18)

(3) Only 𝐷𝑆𝑒𝑡 changes. In this case, similarly adjusting a whole sub-tree to node

𝑟 would dominate the cost, and we analyze this. The time cost consists of two730

parts: (1) removing O(𝑑) branches for each context node in this sub-tree, and

(2) reevaluating truth values and regenerating link for nodes on paths from

35

each context node to root node 𝑟 . For the former, context 𝑐𝑡𝑥𝑖 initially (before

applying changes) corresponds to 𝑒𝑖−1 context nodes in the sub-tree, and later

(after applying changes) corresponds to (𝑒 − 𝑑)𝑖−1 context nodes. Then, with a735

typical top-down adjustment process, the time cost for this part is:

𝑂 (
𝑘−1∑︁
𝑖=1

𝑑 · (𝑒 − 𝑑)𝑖−1) = 𝑂 (𝑑 · (𝑒 − 𝑑)
𝑘−1 − 1

𝑒 − 𝑑 − 1). (19)

For the latter, all remaining nodes in the sub-tree (𝑒 − 𝑑 elements remaining

now for each context now) except lowest-layer leaf node in the sub-tree should

be visited twice for reevaluating truth values and regenerating links. Then, the

time cost for this part is:740

𝑂 (2 · 1
2
· ℎ · (𝑒 − 𝑑)𝑘−2). (20)

Combining the two parts, the total time cost is:

𝑂 (𝑑 · (𝑒 − 𝑑)
𝑘−1 − 1

𝑒 − 𝑑 − 1 + ℎ · (𝑒 − 𝑑)𝑘−2). (21)

Based on Equation (15), this can be reduced to

𝑂 (2𝑑 + 2ℎ
(𝑒 − 𝑑 − 1)ℎ (1 −

𝑑

𝑒
)𝑘−1𝑛0

𝑒
) (22)

Considering O(𝑎/𝑢/𝑑)≪O(𝑒), we can conclude for the nested structure that the

𝐴𝑆𝑒𝑡 case has the most time complexity (containing exponential calculation with a

base over one) for INFuse, and the𝑈𝑆𝑒𝑡 and𝐷𝑆𝑒𝑡 cases have a similar time complexity.745

Finally, we similarly analyze the time complexities of existing constraint check-

ing techniques (i.e., ECC [5], Con-C [13], and PCC [12]) for the comparison. Since

these techniques check upon every single context change, we regard the three sets

as three lists of context changes, i.e, 𝐴𝑆𝑒𝑡 responding to 𝑂 (𝑘 · 𝑎) addition changes,

𝐷𝑆𝑒𝑡 responding to𝑂 (𝑘 ·𝑑) deletion changes, and𝑈𝑆𝑒𝑡 responding to𝑂 (𝑘 ·𝑢) deletion750

changes and following𝑂 (𝑘 ·𝑢) addition changes. To facilitate our analysis, we assume

that the number of nodes in a sub-tree of node 𝑟 and the number of sub-trees of node 𝑟

evenly increase or decrease. Therefore, we measure their averages for estimating the

average complexity of checking one single context change, and then multiply it with

36

Table 2: Time complexity comparison

Constraint

structure

Checking

technique

Set state

Only 𝐴𝑆𝑒𝑡 changes Only𝑈𝑆𝑒𝑡 changes Only 𝐷𝑆𝑒𝑡 changes

Parallel

ECC 𝑂 (3𝑘𝑎(2𝑒 + 𝑎)
2

4𝑒
· 𝑛0
𝑒
) 𝑂 (3𝑘𝑢 (2𝑒 − 𝑢)

2

2𝑒
· 𝑛0
𝑒
) 𝑂 (3𝑘𝑑 (2𝑒 − 𝑑)

2

4𝑒
· 𝑛0
𝑒
)

Con-C 𝑂 (3𝑘𝑎(2𝑒 + 𝑎)
2𝑒

· 𝑛0
𝑒
) 𝑂 (3𝑘𝑢 (2𝑒 − 𝑢)

𝑒
· 𝑛0
𝑒
) 𝑂 (3𝑘𝑑 (2𝑒 − 𝑑)

2𝑒
· 𝑛0
𝑒
)

PCC 𝑂 (3𝑎(2𝑒 + 𝑎)
2𝑒

· 𝑛0
𝑒
) 𝑂 (3𝑢 (2𝑒 − 𝑢)

𝑒
· 𝑛0
𝑒
) 𝑂 (𝑑 (2𝑒 − 𝑑)

𝑒
· 𝑛0
𝑒
)

INFuse 𝑂 (3(𝑒 + 𝑎)
𝑒

· 𝑛0
𝑒
) 𝑂 (2 · 𝑛0

𝑒
) 𝑂 (2𝑑 + ℎ

𝑒ℎ
· 𝑛0
𝑒
)

Nested

ECC 𝑂 (3𝑘𝑎(2𝑒 + 𝑎)
4

(𝑒 + 𝑎
𝑒
)𝑘−1 · 𝑛0

𝑒
) 𝑂 (3𝑘𝑢 (2𝑒 − 𝑢)

2
· 𝑛0
𝑒
) 𝑂 (3𝑘𝑑 (2𝑒 − 𝑑)

4
· 𝑛0
𝑒
)

Con-C 𝑂 (3𝑘𝑎
2
(𝑒 + 𝑎

𝑒
)𝑘−1 · 𝑛0

𝑒
) 𝑂 (3𝑘𝑢 · 𝑛0

𝑒
) 𝑂 (3𝑘𝑑

2
· 𝑛0
𝑒
)

PCC 𝑂 (3(2𝑒 + 𝑎)
2

(𝑒 + 𝑎
𝑒
)𝑘−1 · 𝑛0

𝑒
) 𝑂 (4𝑒

2 − 𝑢2

𝑒
· 𝑛0
𝑒
) 𝑂 ((𝑒 + 𝑑) (2𝑒 − 𝑑)

2𝑒
· 𝑛0
𝑒
)

INFuse 𝑂 (3(𝑒 + 𝑎
𝑒
)𝑘−1 · 𝑛0

𝑒
) 𝑂 (2 · 𝑛0

𝑒
) 𝑂 (2𝑑 + 2ℎ

(𝑒 − 𝑑 − 1)ℎ (1 −
𝑑

𝑒
)𝑘−1𝑛0

𝑒
)

the number of context changes to estimate the overall time complexity of checking the755

three sets respectively. Following this idea, we adapt the time complexity analysis of

existing checking techniques from their work [12, 13], and give our analyzing results

in Table 2 (we leave the full-length analyses to the Appendix for interested readers).

As shown in Table 2, we can observe their relative differences in time complexity:

generally, ECC is the most complex, Con-C and PCC are at the middle, and INFuse is760

the least complex.

Then combing all the analyses for the two extreme structures (parallel and nested),

and the three set cases (𝐴𝑆𝑒𝑡 ,𝑈𝑆𝑒𝑡 , and 𝐷𝑆𝑒𝑡) for all checking techniques (ECC, PCC,

Con-C, and our INFuse), we summarize our three main conclusions: (1) impact of the

constraint structure: the parallel structure incurs the least complexity to constraint765

checking, and nested structure incurs themost complexity, and othermixed structures

would behave in between; (2) impact of the set type: 𝐴𝑆𝑒𝑡 changes (context addition)

37

incur the most complexity to constraint checking, 𝑈𝑆𝑒𝑡 changes (context update) in-

cur moderate complexity, and 𝐷𝑆𝑒𝑡 changes (context deletion) incur the least com-

plexity; (3) the comparisons among all techniques: ECC has the weakest capability of770

handling complex constraint checking, Con-C/PCC has the moderate capability, and

INFuse has the strongest capability. We shall also validate these analyses in RQ4 in

the evaluation.

4. Evaluation

In this section, we evaluate INFuse’s performance and compare it with existing775

constraint checking techniques.

4.1. Research Questions

We aim to answer the following three research questions:

• RQ1 (Motivation): How do existing constraint checking techniques behave when

handling large-volume dynamic contexts?780

• RQ2 (Effectiveness): How effective is INFuse in constraint checking for detecting

context inconsistencies, as compared with existing techniques?

• RQ3 (Fusion Effect): How does INFuse’s fusion mechanism contribute to its

efficiency improvement?

• RQ4 (Complexity Factor): How is INFuse’s efficiency affected by different com-785

plexity factors?

• RQ5 (Practical Usage): How effective is INFuse in constraint checking under

real-life settings?

4.2. Experimental Design and Setup

Application. For fair comparisons, we used the taxi application, SmartCity, as790

our experimental subject, following existing work [10, 12–14]. The application used

massive taxi-driving data for smart route guidance.

38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

C
h

a
n

g
e
s

(#
)

Figure 19: Distribution of context changes for 24 hour-based groups

Contexts. The application was accompanied with massive data concerning 2,716

vehicles monitored in a continuous period of 24 hours, which include 4.3 million raw

driving data lines (containing vehicle id, GPS coordinates, driving speed and orien-795

tation, and service status). These data correspond to 25.6 million context changes as

modeled in the application. Fig. 19 illustrates the distribution of these context changes

by 24 hour-based groups (from 0am–24pm). We observed that these numbers can in-

cur significantly varying workloads to constraint checking, since they range from

311,240 to 1,664,900 (up to a 435% difference). We believe that this characteristics can800

make our experimental data more representative for evaluating abilities of different

constraint checking techniques against various workloads.

Constraints. We used all 48 consistency constraints associated with the appli-

cation, also studied in existing work [10, 12]. They cover all formula types in the

constraint language. They considered both spacial and temporal properties about ve-805

hicles’ movements. These properties could be divided into four categories, namely,

validating vehivles’ geographical ranges, reasonable velocities, velocity-location re-

lationships, and hot-area monitoring.

Process. In experiments, contexts are fed to the application with a middleware

layer in between, which checks the contexts for consistency. We compared INFuse810

with existing constraint checking techniques (ECC, PCC, and Con-C), using both their

original versions (subscript “O”) [12, 13] and variants enhanced by GEAS (subscript

“G”) [10] for better scheduling for efficiency. We also compared INFuse with a naïve

implementation INFuse0 of the incremental-concurrent idea, which directly split in-

39

cremental checking into parallel computing units (i.e., without INFuse’s concurrency815

maximization).

Setup. We design three independent variables:

• Checking technique. We compare eight techniques or variants, namely, ECC𝑂 ,

ECC𝐺 , Con-C𝑂 , Con-C𝐺 , PCC𝑂 , PCC𝐺 , INFuse0, and INFuse.

• Checking workload. As aforementioned, different groups of context changes820

incur significantly varying workloads. Therefore, we use all 24 groups of con-

text changes to evaluate and compare the performance of different constraint

checking techniques (for fairness).

• Running mode. We study two running modes, namely, offline and online. With

the former, next context changes are fed to the application only when previous825

changes have been handled (for comparing true efficiency differences). With the

latter, context changes are fed to the application strictly according to their orig-

inal timestamps and intervals in between, no matter whether previous changes

have been handled or not (for testing in a real-life setting, possibly causing false

negatives or positives).830

We design three dependent variables:

• Checking time. It measures the total time spent on constraint checking.

• Precision. It measures the proportion of context inconsistencies that are cor-

rectly reported against all reported inconsistencies.

• Recall. It measures the proportion of context inconsistencies that are correctly835

reported against all inconsistencies that should be reported.

All experiments were conducted on a commodity PC with an AMD Ryzen 5600X

6-Core Processor with 32GB RAM, installed with MS windows 10 Professional and

Oracle Java 8.

To answer research question RQ1, we compare six existing constraint checking840

techniques and INFuse0 on all 24-hour context changes under the offline mode to

40

evaluate and compare their performance. To answer research question RQ2, we com-

pare all eight constraint checking techniques (including INFuse0 and INFuse) on all

24-hour context changes, as well as 24 hour-based groups separately under the offline

mode, for evaluating and comparing their checking qualities (by reported inconsis-845

tencies) and efficiencies (by checking time). To answer research question RQ3, we

study how INFuse’s fusion mechanism enhances the checking efficiency of incremen-

tal and concurrent techniques individually by selective enabling/disabling treatments

in INFuse in checking selected groups of context changes, and study how they are

fused together to achieve INFuse’s overall efficiency improvement. To answer re-850

search question RQ4, we study INFuse’s checking efficiency by controlling different

complexity factors, e.g., with different structures of consistency constraints (parallel

or nested) and different set types in checking tasks (𝐴𝑆𝑒𝑡 , 𝑈𝑆𝑒𝑡 , or 𝐷𝑆𝑒𝑡). To answer

research question RQ5, we compare all eight constraint checking techniques on 24

hour-based groups under the online mode (i.e., with real-life timestamps and inter-855

vals), for evaluating and comparing their checking qualities (by precision and recall)

and efficiencies (by checking time).

4.3. Experimental Results

We answer the five research questions in turn.

4.3.1. RQ1 (Motivation)860

We compared the checking time of the seven constraint checking techniques on

all 24-hour context changes in Fig. 20.

We observe that the checking time varied significantly for different constraint

checking techniques, e.g., ECC up to 153.3–970.0 hours, Con-C for 83.7–506.7 hours,

and PCC for 31.7–53.3 hours. We note that the time limit for handling all 24-hour865

context changes is 24 hours, as illustrated by the red dashed line, and thus none of

these techniques fulfilled this requirement, e.g., the worst case of ECC𝑂 took more

than 40 days! This strongly calls for more efficient constraint checking techniques.

Besides, also as INFUSE0 shows, directly splitting incremental checking into parallel

41

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0
0

200

400

600

800

1,000

C
h

e
ck

in
g

ti
m

e
(h

)

970.0

153.3

506.7

83.7 53.3 31.7 53.8

Figure 20: Checking time comparison for the seven techniques with respect to all 24-hour context changes

(the red dashed line represents the 24-hour time limit)

computing units did not bring significant improvement (53.8 hours), behaving even870

worse than PCC (31.7–53.3 hours).

Therefore, we answer RQ1 as follows: All existing constraint checking techniques

and naïve implementation of the incremental-concurrent idea failed to deliver required

checking efficiency, calling for new research efforts.

4.3.2. RQ2 (Effectiveness)875

We then compared the checking time of INFuse to the other seven techniques

on all 24-hour context changes in Fig. 21. As the comparison was under the offline

mode, all context changes were fed and then checked in turn, and thus all checking

techniques obtained correct inconsistency detection results (this may not be true for

the online mode, as discussed later). Therefore, we focus on the checking time com-880

parison here.

From Fig. 21, we observe that INFuse took only eight hours to complete constraint

checking for all 24-hour context changes, which satisfied the aforementioned time

limit requirement (note that none of the other seven techniques succeeded, as dis-

cussed in RQ1). Moreover, we also observe that INFuse brought significant efficiency885

improvement, as compared with other constraint checking techniques, e.g., 18.2x–

120.3x efficiency improvement against ECC (or 94.8%–99.2% checking time reduction),

9.5x–62.3x improvement against Con-C (or 90.4%–98.4% time reduction), 3.0x–5.7x

improvement against PCC (or 74.8%–85.0% time reduction), and 5.7x improvement

against INFuse0 (or 85.1% time reduction). This shows INFuse’s general superiority890

42

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse
0

200

400

600

800

1,000

C
h

e
ck

in
g

ti
m

e
(h

)

970.0

153.3

506.7

83.7 53.3 31.7 53.8
8.0

Figure 21: Checking time comparison for all the eight checking techniques with respect to all 24-hour

context changes

and stable high-efficiency for large-volume constraint checking tasks. Note that IN-

Fuse’s clear efficiency improvement over existing checking techniques also echoes

our earlier conclusion (3) in Section 3.5.

To further evaluate INFuse’s effectiveness across different workloads, we next

compared the checking time of all the eight constraint checking techniques on 24895

hour-based groups in both Fig. 22 (in linear ordinate coordinates) and Fig. 23 (in log-

arithmic ordinate coordinates) for better illustration and comparisons. We observe

that: (1) Although different workloads incurred greatly varying checking time (from

seconds to hours, hundreds even thousands of times in the performance difference),

INFuse behaved consistently significant and stable efficiency improvement for check-900

ing all groups of context changes, against all other techniques. For example, INFuse’s

efficiency improvement for the lightest workload (group 4 in the time slot of 4am–

5am) is 0.0x–18.6x and that for the heaviest workload (group 17 in the time slot of

5pm–6pm) is 3.1x–166.2x. The average efficiency improvement for 24 hour-based

groups is 2.3x–98.1x, as compared with other techniques. (2) INFuse’s checking time905

(from 3.4 seconds to 0.8 hours) satisfied all one-hour time limits for every group, con-

sistently exhibiting INFuse’s high efficiency across different checking workloads. (3)

When comparing INFusewith the naïve implementation Infuse0, their difference was

also large and impressive, e.g., the time reduction varying from 32.2% to 85.6%. We

owe all these achievements to INFuse’s carefully designed concurrency maximization910

and fusion soundness as explained and analyzed earlier.

We also studied the trend of INFuse’s efficiency improvements for 24 hour-based

43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

0

2,000

4,000

6,000

8,000

C
h

e
ck

in
g

ti
m

e
(m

in
) ECCO

ECCG

INFuse

(a) Checking time comparison for ECC and INFuse

(unit: minute)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

0

1,000

2,000

3,000

4,000

C
h

e
ck

in
g

ti
m

e
(m

in
) Con-CO

Con-CG

INFuse

(b) Checking time comparison for Con-C and INFuse

(unit: minute)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

0

5,000

10,000

15,000

20,000

C
h

e
ck

in
g

ti
m

e
(s

)

PCCO

PCCG

INFuse

(c) Checking time comparison for PCC and INFuse

(unit: second)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

0

5,000

10,000

15,000

20,000

C
h

e
ck

in
g

ti
m

e
(s

)

INFuse0

INFuse

(d) Checking time comparison for INFUSE0 and

INFuse (unit: second)

Figure 22: Checking time comparison for all checking techniques on 24 hour-based groups (linear scale)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

100

102

104

C
h

e
ck

in
g

ti
m

e
(m

in
) ECCO

ECCG

INFuse

(a) Checking time comparison for ECC and INFuse

(unit: minute)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

100

100

101

102

102

C
h

e
ck

in
g

ti
m

e
(m

in
) Con-CO

Con-CG

INFuse

(b) Checking time comparison for Con-C and INFuse

(unit: minute)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

101

102

102

104

C
h

e
ck

in
g

ti
m

e
(s

)

PCCO

PCCG

INFuse

(c) Checking time comparison for PCC and INFuse

(unit: second)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Group

101

102

102

104

C
h

e
ck

in
g

ti
m

e
(s

)

INFuse0

INFuse

(d) Checking time comparison for INFUSE0 and

INFuse (unit: second)

Figure 23: Checking time comparison for all checking techniques on 24 hour-based groups (logarithmic

scale)

44

Lightest Heaviest
Workload

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

C
h

a
n

g
e
s

(#
)

0

25

50

75

100

125

150

E
ffi

ci
e
n

cy
Im

p
ro

v
e
m

e
n
t

(x
)INFuse over ECCO

INFuse over Con-CO

INFuse over PCCO

INFuse over ECCG

INFuse over Con-CG

INFuse over PCCG

INFuse over INFuse0

Figure 24: INFuse’s efficiency improvement over existing checking techniques on 24 hour-based groups

(sorted by increasing workloads)

groups with the increasing workloads in Fig. 24. Note that the number of context

changes to handle in each hour largely approximates the checking workload. In the

figure, we observe that with the growth of the checking workload, INFuse’s efficiency915

improvement over the other existing checking techniques and INFuse0 generally hold

a stably increasing trend. This strongly suggests INFuse’s potential in handling even

higher checking workloads.

Therefore, we answer RQ2 as follows: INFuseworked significantly efficiently, achiev-

ing 3.0x–120.3x improvements, as compared with all other constraint checking tech-920

niques. Besides, INFuse worked stably and were suitable for higher checking workloads.

4.3.3. RQ3 (Fusion Effect)

We then study how INFuse’s fusion mechanism contributes to its efficiency im-

provement. Generally, INFuse infuses two typical constraint checking techniques,

i.e., incremental and concurrent checking, together. However, as studied in RQ1, di-925

rectly combining them can lead to efficiency sacrifice instead, i.e., INFuse0’s efficiency

is even worse than PCC𝑂 . By proposing its task arrangement in WHAT-TO-CHECK

and fusion treatment in HOW-TO-CHECK, INFuse succeeds in soundly fusing incre-

mental and concurrent checking together, with promising efficiency (3.0x–120.3x effi-

ciency improvements) as studied in RQ2. To further study how INFuse’s fusion mech-930

anism contributes to such efficiency improvement, we design two INFuse’s variants,

INFuseincre and INFusecon. INFuseincre disables the concurrent treatment in INFuse

45

Con-CO PCCO INFusecon INFuseincre INFuse0 INFuse
0

20

40

60

80

100

E
ffi

ci
e
n

cy
im

p
ro

v
e
m

e
n
t

(x
)

1.1

17.5
12.5

39.1

16.5

105.2

Figure 25: Efficiency improvement comparison of six checking techniques over ECC𝑂

0 1 10 100
Computational intensity (k)

INFuseincre

PCCO

(a) Computational intensity distribution for PCC𝑂 and INFuseincre (logarithm axis)

0 25 50 75 100 125 150 175
Thread number (#)

INFusecon

Con-CO

(b) Thread number distribution for Con-C𝑂 and INFusecon

Figure 26: Distribution comparisons for studying INFuse’s fusion mechanism

and retains incremental checking with INFuse’s fusion mechanism, while INFusecon

disables the incremental treatment in INFuse and retains concurrent checking with

INFuse’s fusion mechanism. We took ECC𝑂 as the baseline (i.e., set as 1) and com-935

pared relative efficiency improvements for the other five techniques (i.e., PCC𝑂 , Con-

C𝑂 , INFuse, and its two variants) over ECC𝑂 on group 9 of context changes (median

workload). Results are shown in Fig. 25.

From the figure, we observe that the efficiency improvement of INFuse0 over

ECC𝑂 (16.5x) is even smaller than that of PCC𝑂 (17.5x), echoing that combining in-940

cremental and concurrency checking directly actually compromises the checking ef-

ficiency, also earlier observed in RQ1. However, when such incremental and con-

46

current techniques are supported by INFuse’s fusion mechanism, i.e., INFuseincre and

INFusecon, their efficiency would be largely improved, i.e., from the original 17.5x to

39.1x for PCC, and from 1.1x to 12.5x for Con-C, suggesting great contributions of945

INFuse’s fusion mechanism to both further improving the original incremental and

concurrent superiority. This is mainly because for PCC, INFuse’s fusion mechanism

significantly amplifies its computational intensity (i.e., how many nodes in the tree

structures are computed in each scheduled constraint checking), which is well above

that of PCC, as illustrated by the intensity distribution in Fig. 26a. This explains how950

INFuseincre outperforms PCC. For Con-C, INFuse’s fusion mechanism brings more

potentials for concurrent checking, as illustrated by the thread number distribution

in Fig. 26b. We observe that INFuse’s median thread number (101) is well above that

(68) of Con-C. This explains how INFusecon outperforms Con-C. Altogether, INFuse’s

fusion mechanism can further improve both PCC’s and Con-C’s high efficiency. After955

combining them together (i.e., INFuse), we can observe significantly more efficiency

improvement, i.e., 105.2x as compared to ECC𝑂 . Compared to directly combining

incremental and concurrent checking by INFuse0, INFuse’s fusion mechanism can

indeed make extra and dominant contributions.

Therefore, we answer RQ3 as follows: INFuse’s fusionmechanism contributes greatly960

to its impressive efficiency improvement on constraint checking, by significantly enhanc-

ing the efficiency of its fused incremental and concurrent checking.

4.3.4. RQ4 (Complexity Factor)

To investigate the impacts of different complexity factors, we study INFuse’s check-

ing efficiency under different structures of consistency constraints (parallel or nested)965

and different set types in checking tasks (𝐴𝑆𝑒𝑡 ,𝑈𝑆𝑒𝑡 or 𝐷𝑆𝑒𝑡).

First, we investigate how INFuse’s efficiency was affected by different constraint

structures (parallel vs. nested). We measured INFuse’s average checking time when

checking each of its arranged tasks against a parallel constraint (from category “ge-

ographical ranges”) and nested consistency constraint (from category “reasonable970

velocities”, “velocity-location relationships”, or “hot-area monitoring”). Results are

shown in Fig. 27. We observe that INFuse spent significantly more time on checking

47

0.0 1.0 2.0 3.0 4.0 5.0
INFuse’s average checking time (ms)

Nested

Parallel

5.02

0.08

Figure 27: INFuse’s average checking time for parallel and nested structure.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Set size

15

20

A
v
e
ra

g
e

ch
e
ck

in
g

ti
m

e
(m

s)

ASet

USet

DSet

Figure 28: INFuse’s checking time comparison for 𝐴𝑆𝑒𝑡 ,𝑈𝑆𝑒𝑡 , and 𝐷𝑆𝑒𝑡

consistency constraints with nested structures (5.02 ms on average) than those with

parallel structures (0.08 ms on average), with a difference around 62.8x. This suggests

that nested structures can incur obviously heavier checking workloads, echoing our975

conclusion (1) in Section 3.5.

Then, to investigate how INFuse’s efficiency was affected by different set types

of INFuse’s arranged checking tasks, we control to check 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , and𝑈𝑆𝑒𝑡 tasks

individually with an increasing set size. We simulated elements in each set with ran-

domly synthesized values. To be more realistic, we randomly selected ten snapshots980

referring to ten different checking timepoints to apply INFuse from the checking pro-

cess conducted in RQ2. We used them as the initial statuses before checking and

applying INFuse to check the controlled tasks including a non-empty 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , or

𝑈𝑆𝑒𝑡 with a increasing set sizes (from 1 to 16, following the average set size during

the whole checking process in RQ2). As shown in Fig. 28, we can observe that INFuse985

spent significantly more checking time on checking 𝐴𝑆𝑒𝑡 tasks than 𝑈𝑆𝑒𝑡 and 𝐷𝑆𝑒𝑡

tasks (ratio is about 100 : 50 : 1), suggesting that checking 𝐴𝑆𝑒𝑡 indeed induces the

most checking workloads for INFuse, while 𝑈𝑆𝑒𝑡 incurs the median workloads and

𝐷𝑆𝑒𝑡 incurs the least. With the increasing set size, INFuse followed an almost linear

growing trend in the checking time. This also echoes our conclusion (2) in Section 3.5.990

48

Therefore, we can answer RQ4 as follows: Both complex constraint structures (e.g.,

nested) and checking sets (𝐴𝑆𝑒𝑡) can incur the most checking workloads for INFuse, con-

firming our complexity analyses in Section 3.5.

4.3.5. RQ5 (Practical Usage)

We also compared INFusewith the other seven techniques under an online mode,995

which simulated real-life context change scenarios with actual timestamps and inter-

vals. We focus on the checking quality (by precision and recall) and efficiency (by

checking time). Table 3 lists the comparison results.

From the table, we observe that: (1) All six existing checking techniques (ECC,

Con-C, PCC, and their variants) are undesirable because they were all subject to qual-1000

ity problems. Consider the most efficient existing checking technique PCC𝐺 . It pro-

duced satisfactory checking results (precision = 100% and recall = 100%) only for the

first 9 groups (i.e., group 0 to group 8) among all 24 groups (these 9 groups represents

the least workloads). Then, its quality declined rapidly for other higher-workload

groups, i.e., it suffered from extremely severe quality problems (below 10% precision1005

and recall) for 13 groups (i.e., from group 10 to group 23 except group 13). Regard-

ing other existing techniques, since they were even less efficient than PCC𝐺 , they

produced much worse results, e.g., PCC𝑂 and Con-C𝐺 suffered from such extremely

severe quality problems for 14 groups (58% of all 24 groups), ECC𝐺 for 15 groups (63%),

and ECC𝑂 and Con-C𝑂 even for 17 groups (71%). This exactly motivates us for a de-1010

sirable constraint checking technique like INFuse, as we studied in this work. (2) The

naïve implementation INFuse0 also could not alleviate the quality problems. On one

hand, it still suffered from such quality problems for 14 groups. On the other hand,

as compared to PCC𝐺 , INFuse0 exhibited even less efficiently by taking more check-

ing time for groups in which they both reported the same correct inconsistency re-1015

sults, thus reflecting their true efficiency difference since all context changes are fairly

checked in this case. This again echoes our claim that directly splitting incremental

checking into parallel computing units would easily compromise the efficiency in-

stead. (3) INFuse both obtained proper constraint checking results and achieved high

checking efficiency. For all 24 hour-based groups, INFuse achieved a 100% precision1020

49

Ta
bl
e
3:
Co

m
pa
ris

on
sa

m
on

g
al
lt
ec
hn

iq
ue
su

nd
er

th
e
on

lin
e
m
od

e

Ch
ec
ki
ng

te
ch
ni
qu

es
M
et
ric

s
G
ro
up

s

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

EC
C 𝑂

𝑇
co
st
(m

in
)

57
.5

33
.9

14
.8

4.
4

2.
1

2.
3

18
.4

59
.1

61
.7

64
.2

66
.8

62
.3

60
.6

64
.1

61
.0

64
.8

64
.2

67
.2

65
.5

65
.1

65
.9

60
.7

60
.9

62
.6

Pr
ec
is
io
n(
%)

4.
4%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

15
.3
%

26
.6
%

7.
0%

8.
0%

8.
4%

7.
3%

7.
0%

6.
4%

7.
4%

7.
7%

9.
0%

7.
8%

8.
3%

8.
0%

8.
1%

8.
1%

8.
4%

6.
1%

Re
ca
ll(
%)

4.
1%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

15
.2
%

23
.1
%

3.
2%

3.
4%

1.
5%

1.
5%

1.
9%

1.
6%

1.
4%

1.
4%

1.
6%

1.
3%

1.
4%

1.
4%

1.
6%

1.
4%

1.
5%

1.
7%

Co
n-
C 𝑂

𝑇
co
st
(m

in
)

29
.9

13
.0

5.
8

1.
8

0.
9

1.
0

7.
1

42
.7

60
.2

59
.9

61
.0

63
.1

60
.7

59
.8

62
.5

60
.7

64
.3

62
.5

63
.5

63
.3

61
.5

63
.3

60
.8

60
.3

Pr
ec
is
io
n(
%)

4.
8%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

75
.9
%

7.
0%

6.
3%

7.
0%

6.
4%

5.
7%

5.
6%

6.
3%

7.
1%

7.
3%

7.
0%

7.
2%

7.
2%

6.
6%

7.
0%

6.
8%

5.
0%

Re
ca
ll(
%)

4.
8%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

74
.7
%

5.
4%

4.
2%

2.
1%

2.
0%

2.
1%

2.
2%

1.
7%

1.
7%

2.
0%

1.
6%

1.
8%

1.
9%

1.
9%

1.
9%

1.
9%

2.
2%

PC
C 𝑂

𝑇
co
st
(m

in
)

3.
4

1.
9

0.
8

0.
4

0.
2

0.
2

0.
8

5.
8

19
.4

25
.2

56
.6

57
.0

58
.5

58
.7

56
.9

56
.7

57
.0

56
.8

56
.9

57
.2

56
.4

56
.4

56
.6

58
.4

Pr
ec
is
io
n(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

92
.5
%

4.
2%

3.
8%

3.
9%

5.
8%

4.
3%

4.
4%

4.
2%

4.
6%

4.
6%

4.
5%

4.
4%

4.
7%

4.
4%

3.
8%

Re
ca
ll(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

90
.3
%

3.
6%

3.
5%

3.
8%

5.
6%

3.
6%

3.
4%

3.
5%

3.
5%

3.
7%

3.
6%

3.
7%

3.
8%

3.
9%

3.
8%

EC
C 𝐺

𝑇
co
st
(m

in
)

11
.0

5.
3

2.
2

0.
9

0.
4

0.
5

2.
7

16
.4

55
.1

59
.8

57
.7

57
.5

58
.3

58
.6

57
.2

58
.4

58
.2

59
.6

58
.8

57
.8

57
.2

56
.9

57
.6

58
.0

Pr
ec
is
io
n(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

35
.5
%

7.
0%

4.
7%

4.
1%

4.
1%

3.
6%

4.
7%

5.
1%

5.
4%

5.
5%

5.
4%

5.
3%

4.
9%

4.
8%

4.
7%

3.
8%

Re
ca
ll(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

35
.4
%

6.
6%

3.
2%

3.
0%

3.
6%

3.
0%

2.
8%

2.
7%

3.
2%

2.
7%

3.
0%

3.
0%

3.
1%

2.
8%

3.
1%

3.
3%

Co
n-
C 𝐺

𝑇
co
st
(m

in
)

4.
6

2.
2

0.
9

0.
5

0.
3

0.
3

1.
1

6.
8

24
.3

32
.5

57
.3

57
.2

59
.3

58
.6

56
.3

55
.7

56
56
.3

56
.6

56
.1

56
.4

56
.4

57
.2

59
.7

Pr
ec
is
io
n(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

92
.9
%

3.
8%

3.
6%

3.
8%

3.
8%

3.
8%

4.
4%

4.
2%

4.
6%

4.
8%

4.
5%

4.
0%

4.
4%

4.
3%

3.
3%

Re
ca
ll(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

90
.0
%

3.
5%

3.
4%

3.
5%

3.
7%

3.
2%

3.
3%

3.
5%

3.
2%

3.
8%

3.
7%

3.
4%

3.
6%

3.
8%

3.
3%

PC
C 𝐺

𝑇
co
st
(m

in
)

2.
6

1.
5

0.
7

0.
3

0.
2

0.
2

0.
6

4.
1

13
.0

18
.3

59
.9

60
.0

52
.2

54
.7

59
.9

59
.9

60
.2

59
.9

60
.0

59
.9

59
.7

60
.1

59
.9

54
.3

Pr
ec
is
io
n(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

91
.0
%

3.
9%

3.
8%

4.
6%

33
.0
%

4.
4%

4.
0%

4.
2%

4.
1%

4.
2%

4.
4%

4.
0%

4.
6%

4.
5%

4.
9%

Re
ca
ll(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

91
.0
%

3.
9%

3.
8%

4.
6%

33
.0
%

4.
4%

3.
8%

4.
1%

4.
0%

4.
3%

4.
2%

4.
1%

4.
4%

4.
3%

4.
8%

IN
Fu

se
0

𝑇
co
st
(m

in
)

3.
5

2.
0

1.
0

0.
4

0.
2

0.
2

0.
9

6.
2

21
.0

26
.5

57
.0

57
.2

58
.7

58
.0

57
.2

57
.0

57
.5

57
.7

56
.9

56
.8

57
.0

57
.2

57
.2

58
.6

Pr
ec
is
io
n(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

92
.6
%

4.
1%

3.
9%

3.
9%

6.
2%

4.
3%

4.
4%

4.
3%

4.
5%

4.
6%

4.
4%

4.
3%

4.
5%

4.
4%

3.
7%

Re
ca
ll(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

90
.4
%

3.
5%

3.
6%

3.
9%

3.
8%

5.
6%

3.
3%

3.
6%

3.
4%

3.
7%

3.
6%

3.
5%

3.
7%

3.
8%

3.
6%

IN
Fu

se

𝑇
co
st
(m

in
)

0.
9

0.
8

0.
4

0.
2

0.
2

0.
2

0.
3

1.
6

4.
0

7.
6

28
.7

27
.5

16
.2

19
.7

39
.7

42
.0

38
.5

49
.2

43
.6

38
.8

32
.7

34
.8

27
.8

16
.1

Pr
ec
is
io
n(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

98
.2
%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

Re
ca
ll(
%)

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

98
.2
%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

10
.0
%

10
0.
0%

10
0.
0%

10
0.
0%

10
0.
0%

an
d

re
pr
es
en
tt
he

pr
ec
is
io
n
or

th
e
re
ca
ll
is
[0
.0
%,

10
.0
%)
,[
10
.0
%,

90
.0
%)
,[
90
.0
%,

10
0.
0%

),
an
d
10
0.
0%

re
sp
ec
tiv

el
y.

50

and recall for 23 groups except group 10, for which INFuse achieved a 98.2% precision

and recall, significantly higher than those of other techniques (precision down to 3.3%

and recall down to 1.3%). We note that a 100% precision and recall may not always

be possible since network connection and object serialization costs were inevitable

under real-life settings, which could affect other key computations unexpectedly. Re-1025

garding the checking efficiency, INFuse always took the least time for all 24 groups,

12.5%–98.4% less than other techniques across different groups.

Therefore, we answer RQ5 as follows: INFuseworked significantly efficiently under

real-life dynamic scenarios with a 100% precision and recall for almost all groups, while

other techniques could suffer down to a 3.3% precision and 1.3% recall, exhibiting INFuse’s1030

clear technical superiority and applicability.

4.4. Threats Analysis and Discussion

First, in our experiments, we selected only one application, and this could cause

possible threats to experimental conclusions. Regarding this, we have tried to alleviate

such threats by carefully considering relevant factors: (1) The application was also1035

used in existing work [10, 12–14], with the same set of consistency constraints and

contexts, so as to facilitate across-technique comparisons (to be fair); (2) We used all

48 consistency constraints associated with the application, which cover all constraints

used in existing work’s experiments (to be comprehensive), and these constraints also

cover all formula types supported in the constraint language (to be complete); (3)1040

All 24 groups of context changes (collected in a continuous period of 24 hours) were

selected from a whole day to represent varying and realistic workloads, for examining

the effectiveness of different constraint checking techniques (to be representative); (4)

All the constraint checking techniques were repeated for every context change group

around five times (to be reliable), except for ECC𝑂 and Con-C𝑂 , which ran extremely1045

too costly (each run lasted over 40 and 20 days, respectively).

Second, to avoid possible platform and implementation bias, we (re)implemented

all constraint checking techniques under the same I/O interfaces and data structures

according to their respective publications, and compared with their released versions

for ensuring the correctness of our implementation. We have also checked all the in-1050

51

consistencies reported by every constraint checking technique. We have also released

our implementation1 to facilitate follow-up research.

5. Related Work

In this section, we discuss the related work in recent years, following four as-

pects, namely, managing consistency for software artifacts, reducing noises in raw1055

low-quality data, detecting inconsistencies for application contexts, and resolving de-

tected context inconsistencies. These four aspects closely relate to our studied context

inconsistency problem in this work.

Managing consistency for software artifacts. Our software engineering com-

munity has extensively studied the problem of consistency management for vari-1060

ous software artifacts, which concern different software development processes, e.g.,

software refactoring [20], method name suggestion [21], agile model-based develop-

ment [22], and the whole software engineering process [23]. Some pieces of work fo-

cus on managing the consistency of traditional software artifacts, like edit scripts [1],

UML models [2–4], XML documents [5–7], and distributed source code [24], which1065

are featured as being typically static or evolving slowly. This line of work mainly

pays attention to the effectiveness of consistency management rather than efficiency.

Other pieces of work tackle more dynamic artifacts in context-aware systems [25, 26],

attention-aware systems [27], and safety-critical systems [28]. These systems recently

receive increasing attention for their functional qualities, and we are working along1070

this line with extensive application scenarios, like Pollen Wise [29], Humanoid Com-

panion Robot [30], self-driving vehicle systems [31, 32], and unmanned aerial vehicles

(UAVs) [33–35]. Unlike traditional software artifacts, these artifacts are featured as

changing rapidly, thus requiring more efficient consistency management. Our work

in this article studies consistency of application contexts, which are modeled at the1075

application layer based on its perceived environmental conditions with some deriva-

tion processes from raw data. For such applications, some frameworks or middleware

1https://github.com/yuzi-zly/INFUSE

52

infrastructures, like Cabot [36], Adam [37], Lime [38], and CARISMA [39], have also

been developed to specially support context-aware properties with quality guarantees

(e.g., consistency or reliability).1080

Reducing noises in raw low-quality data. Raw environmental data for ap-

plications are mainly collected by various physical sensors (e.g., cameras and micro-

phones). Typically, raw data contain natural noises due to the instability of sensor

readings. For example, the widely used radio-based object identification and tracking

RFID technology can often be subject to missing or cross reading problems [16–19].1085

To reduce such noises, one line of work set pre-specific filtering thresholds [17] or

matching patterns [40] to filter data to make them meet specific requirements. How-

ever, one major limitation of such techniques is that they focus mainly on proper

threshold selection or pattern designing, while sometimes application developers or

system administrators are not fully aware of application quality requirements. Re-1090

cently, another line of work took advantage of artificial intelligence (AI) technologies

to clean raw data for better quality. For example, Darcy et al. [41] proposed a method-

ology to combine highly intelligent feature set definition and classifying techniques

to handle false-positive data problems. Li et al. [42] proposed to select training data

accurately facing the larger number of the noisy labels in the datasets. Chun et al. [43]1095

and Tan et al. [44] proposed to reduce data noises for UAVs via convolutional neural

networks. However, such data cleaning techniques would require substantial training

data and may not be easy to adapt to other dynamic application scenarios.

Detecting inconsistencies for application contexts. This aspect focuses on

how to efficiently and effectively detect inconsistencies in dynamic application con-1100

texts. On this particular aspect, various techniques workwith varying efficiency gains

and costs. For example, xlinkit [5] worked in a full checking way, as the correctness

baseline, to detect all possible inconsistencies in artifacts under checking; PCC [12]

checked incrementally by reusing previous results for higher efficiency; Con-C [13]

checked concurrently on parallel computational units with similar workloads. All1105

these techniques are useful for different application requirements, but are gradually

becoming less effective, with the rapid growth of environmental dynamics and context

volume. Regarding this, GEAS [10] was proposed to adaptively schedule the check-

53

ing of multiple context changes together to help accelerate a spectrum of existing

techniques. Our work resembles this line of efforts, but builds on dynamic valid-1110

ity criteria derived from incremental and concurrent checking, different from GEAS,

which builds only on static constraint information. As a result, INFuse works even

more efficiently than any existing constraint checking technique, either originally or

combined with GEAS, as our experimental results reported. Besides, Xu et al. [45]

theoretically analyzed possible link generation wastes in constraint checking, which1115

opened a new direction to further improve the checking efficiency (i.e., reducing the

link generation part rather than making the detection itself faster). Chen et al. [46]

worked along this line, and recently went further by proposing to analyze and gener-

ate exactly necessary-only links (i.e., eliminating all redundant link generation), and

this effort can additionally help improve the efficiency for context inconsistency de-1120

tection.

Resolving detected context inconsistencies. Besides detecting inconsisten-

cies for application contexts, one relevant and important aspect of research efforts

is around resolving detected context inconsistencies. Existing inconsistency resolu-

tion work can be roughly classified into two categories. One category of work pro-1125

posed various resolution techniques based on heuristics. For example, Chomicki et

al. [47] selected a random context for removal to solve the inconsistency among mul-

tiple contexts to minimize the cost. Bu et al. [48] removed all contexts related with the

same inconsistency to play safety. Xu et al. [49] proposed another heuristic technique,

which removed contexts participated in the detected inconsistencies more frequently1130

to balance the cost and safety. However, these techniques could unexpectedly cause

applications to behave abnormally, since they may accidentally remove important

contexts applications are relying on. The other category of work took application

logics into consideration during to the fixing process for the detected inconsistencies.

For example, Chen et al. [50] proposed to resolve inconsistencies with the help of ap-1135

plication semantics to maximize possible application workflows. Xu et al. [51, 52] and

Khelladi et al. [53] proposed to analyze and minimize side effects of such fixing or

resolution actions unexpectedly on applications. These pieces of research efforts are

consequent actions after high-efficient context inconsistency detection, as we studied

54

in this work, for a large-spectrum of adaptive modern applications.1140

6. Conclusion

In this work, we studied the context inconsistency detection problem, and ana-

lyzed how to substantially boost its efficiency over state-of-the-art techniques. We

proposed a novel INFuse approach, which on one hand automatically identifies valid

and maximized context change groups for concurrency maximization, and on the1145

other hand soundly fuses incremental and concurrent checking together for reuse and

efficiency maximization. These efforts work on both the constraint checking aspect

and checking scheduling aspect, thus outperforming any existing constraint checking

technique and checking scheduling strategy, as well as their combinations, realizing a

3.0x–120.3x efficiency improvement with desirable quality guarantees. In future, we1150

plan to more extensively validate INFuse on other application scenarios with massive

context data, and explore further finer-granularity tuning strategies inside the fusion

checking for unexpectedly dynamic checking workloads, making it more general and

applicable.

7. Acknowledgement1155

This workwas supported by the Natural Science Foundation of China under Grant

Nos. 61932021 and 62072225, and the Leading-edge Technology Program of Jiangsu

Natural Science Foundation under Grant Nos. BK20202001 and BK20220771. The au-

thors would also like to thank the support from the Fundamental Research Funds for

the Central Universities of China (020214380102 and 020214912220), and Collabora-1160

tive Innovation Center of Novel Software Technology and Industrialization, Jiangsu,

China.

References

[1] T. Kehrer, U. Kelter, G. Taentzer, Consistency-preserving edit scripts in model

versioning, in: E. Denney, T. Bultan, A. Zeller (Eds.), 2013 28th IEEE/ACM In-1165

ternational Conference on Automated Software Engineering, ASE 2013, Silicon

55

Valley, CA, USA, November 11-15, 2013, IEEE, 2013, pp. 191–201. URL: https:

//doi.org/10.1109/ASE.2013.6693079. doi:10.1109/ASE.2013.6693079.

[2] R. S. Bashir, S. P. Lee, S. ur Rehman Khan, V. Chang, S. Farid, UMLmodels consis-

tency management: Guidelines for software quality manager, Int. J. Inf. Manag.1170

36 (2016) 883–899. URL: https://doi.org/10.1016/j.ijinfomgt.2016.05.

024. doi:10.1016/j.ijinfomgt.2016.05.024.

[3] N. Messaoudi, A. Chaoui, M. Bettaz, An approach to UML consistency checking

based on compositional semantics, Int. J. Embed. Real Time Commun. Syst. 8

(2017) 1–23. URL: https://doi.org/10.4018/IJERTCS.2017070101. doi:10.1175

4018/IJERTCS.2017070101.

[4] B. Wei, J. Sun, Leveraging SPARQL queries for UML consistency checking, Int. J.

Softw. Eng. Knowl. Eng. 31 (2021) 635–654. URL: https://doi.org/10.1142/

S0218194021500170. doi:10.1142/S0218194021500170.

[5] C. Nentwich, L. Capra, W. Emmerich, A. Finkelstein, xlinkit: a consistency1180

checking and smart link generation service, ACM Trans. Internet Techn.

2 (2002) 151–185. URL: https://doi.org/10.1145/514183.514186. doi:10.

1145/514183.514186.

[6] S. P. Reiss, Incremental maintenance of software artifacts, IEEE Trans. Soft-

ware Eng. 32 (2006) 682–697. URL: https://doi.org/10.1109/TSE.2006.91.1185

doi:10.1109/TSE.2006.91.

[7] H. A. H. Handley, W. Khallouli, J. Huang, W. Edmonson, N. Kibret, Main-

taining the consistency of sysml model exports to XML metadata interchange

(XMI), in: B. Rassa, S. Givigi (Eds.), IEEE International Systems Confer-

ence, SysCon 2021, Vancouver, BC, Canada, April 15 - May 15, 2021, IEEE,1190

2021, pp. 1–8. URL: https://doi.org/10.1109/SysCon48628.2021.9447105.

doi:10.1109/SysCon48628.2021.9447105.

[8] Y. Brun, R. Holmes, M. D. Ernst, D. Notkin, Proactive detection of collabora-

tion conflicts, in: T. Gyimóthy, A. Zeller (Eds.), SIGSOFT/FSE’11 19th ACM

56

https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1109/ASE.2013.6693079
http://dx.doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1016/j.ijinfomgt.2016.05.024
https://doi.org/10.1016/j.ijinfomgt.2016.05.024
https://doi.org/10.1016/j.ijinfomgt.2016.05.024
http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.024
https://doi.org/10.4018/IJERTCS.2017070101
http://dx.doi.org/10.4018/IJERTCS.2017070101
http://dx.doi.org/10.4018/IJERTCS.2017070101
http://dx.doi.org/10.4018/IJERTCS.2017070101
https://doi.org/10.1142/S0218194021500170
https://doi.org/10.1142/S0218194021500170
https://doi.org/10.1142/S0218194021500170
http://dx.doi.org/10.1142/S0218194021500170
https://doi.org/10.1145/514183.514186
http://dx.doi.org/10.1145/514183.514186
http://dx.doi.org/10.1145/514183.514186
http://dx.doi.org/10.1145/514183.514186
https://doi.org/10.1109/TSE.2006.91
http://dx.doi.org/10.1109/TSE.2006.91
https://doi.org/10.1109/SysCon48628.2021.9447105
http://dx.doi.org/10.1109/SysCon48628.2021.9447105

SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and1195

ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged,

Hungary, September 5-9, 2011, ACM, 2011, pp. 168–178. URL: https://doi.

org/10.1145/2025113.2025139. doi:10.1145/2025113.2025139.

[9] C. Xu, Y. Qin, P. Yu, C. Cao, J. Lu, Theories and techniques for growing software:

Paradigm and beyond, Scientia Sinica Informationis 50 (2020) 1595–1611.1200

[10] H. Wang, C. Xu, B. Guo, X. Ma, J. Lu, Generic adaptive scheduling for effi-

cient context inconsistency detection, IEEE Trans. Software Eng. 47 (2021) 464–

497. URL: https://doi.org/10.1109/TSE.2019.2898976. doi:10.1109/TSE.

2019.2898976.

[11] B. Guo, H. Wang, C. Xu, J. Lu, GEAS: generic adaptive scheduling for high-1205

efficiency context inconsistency detection, in: H. Mei, L. Zhang, T. Zimmermann

(Eds.), 2017 IEEE International Conference on Software Maintenance and Evo-

lution, ICSME 2017, Shanghai, China, September 17-22, 2017, IEEE Computer

Society, 2017, pp. 137–147. URL: https://doi.org/10.1109/ICSME.2017.10.

doi:10.1109/ICSME.2017.10.1210

[12] C. Xu, S. C. Cheung, W. K. Chan, C. Ye, Partial constraint checking for con-

text consistency in pervasive computing, ACM Trans. Softw. Eng. Methodol. 19

(2010) 9:1–9:61. URL: https://doi.org/10.1145/1656250.1656253. doi:10.

1145/1656250.1656253.

[13] C. Xu, Y. Liu, S. C. Cheung, C. Cao, J. Lv, Towards context consistency1215

by concurrent checking for internetware applications, Sci. China Inf. Sci. 56

(2013) 1–20. URL: https://doi.org/10.1007/s11432-013-4907-5. doi:10.

1007/s11432-013-4907-5.

[14] C. Xu, W. Xi, S. Cheung, X. Ma, C. Cao, J. Lu, Cina: Suppressing the detection

of unstable context inconsistency, IEEE Trans. Software Eng. 41 (2015) 842–1220

865. URL: https://doi.org/10.1109/TSE.2015.2418760. doi:10.1109/TSE.

2015.2418760.

57

https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139
http://dx.doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/TSE.2019.2898976
http://dx.doi.org/10.1109/TSE.2019.2898976
http://dx.doi.org/10.1109/TSE.2019.2898976
http://dx.doi.org/10.1109/TSE.2019.2898976
https://doi.org/10.1109/ICSME.2017.10
http://dx.doi.org/10.1109/ICSME.2017.10
https://doi.org/10.1145/1656250.1656253
http://dx.doi.org/10.1145/1656250.1656253
http://dx.doi.org/10.1145/1656250.1656253
http://dx.doi.org/10.1145/1656250.1656253
https://doi.org/10.1007/s11432-013-4907-5
http://dx.doi.org/10.1007/s11432-013-4907-5
http://dx.doi.org/10.1007/s11432-013-4907-5
http://dx.doi.org/10.1007/s11432-013-4907-5
https://doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1109/TSE.2015.2418760

[15] L. Zhang, H. Wang, C. Xu, P. Yu, INFUSE: towards efficient context consistency

by incremental-concurrent check fusion, in: P. Avgeriou, D. Binkley (Eds.), 2022

IEEE International Conference on Software Maintenance and Evolution, ICSME1225

2022, Limassol, Cyprus, October, 2022, IEEE, 2022, pp. 187–198.

[16] S. R. Jeffery, M. N. Garofalakis, M. J. Franklin, Adaptive cleaning for RFID data

streams, in: U. Dayal, K. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L.

Kersten, S. K. Cha, Y. Kim (Eds.), Proceedings of the 32nd International Confer-

ence on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, ACM, 2006,1230

pp. 163–174. URL: http://dl.acm.org/citation.cfm?id=1164143.

[17] J. Rao, S. Doraiswamy, H. Thakkar, L. S. Colby, A deferred cleansing method

for RFID data analytics, in: U. Dayal, K. Whang, D. B. Lomet, G. Alonso, G. M.

Lohman, M. L. Kersten, S. K. Cha, Y. Kim (Eds.), Proceedings of the 32nd Inter-

national Conference on Very Large Data Bases, Seoul, Korea, September 12-15,1235

2006, ACM, 2006, pp. 175–186. URL: http://dl.acm.org/citation.cfm?id=

1164144.

[18] K. Patil, V. Bansal, V. Dhateria, S. Narayankhedkar, Probable causes of rfid tag

read unreliability in supermarkets and proposed solutions, in: T. Zhang, K. El-

Maleh, H. Wang, B. lav Kisacanin (Eds.), International Conference on Informa-1240

tion Processing, IEEE, 2015, pp. 392–397. doi:10.1109/INFOP.2015.7489414.

[19] N. Fescioglu-Ünver, S. H. Choi, D. Sheen, S. R. T. Kumara, RFID in production

and service systems: Technology, applications and issues, Inf. Syst. Frontiers

17 (2015) 1369–1380. URL: https://doi.org/10.1007/s10796-014-9518-1.

doi:10.1007/s10796-014-9518-1.1245

[20] H. A. Le, T. Dao, N. Truong, A formal approach to checking consistency in

software refactoring, Mob. Networks Appl. 22 (2017) 356–366. URL: https://

doi.org/10.1007/s11036-017-0807-z. doi:10.1007/s11036-017-0807-z.

[21] Y. Li, S. Wang, T. N. Nguyen, A context-based automated approach for

method name consistency checking and suggestion, in: N. Juristo, A. van1250

58

http://dl.acm.org/citation.cfm?id=1164143
http://dl.acm.org/citation.cfm?id=1164144
http://dl.acm.org/citation.cfm?id=1164144
http://dl.acm.org/citation.cfm?id=1164144
http://dx.doi.org/10.1109/INFOP.2015.7489414
https://doi.org/10.1007/s10796-014-9518-1
http://dx.doi.org/10.1007/s10796-014-9518-1
https://doi.org/10.1007/s11036-017-0807-z
https://doi.org/10.1007/s11036-017-0807-z
https://doi.org/10.1007/s11036-017-0807-z
http://dx.doi.org/10.1007/s11036-017-0807-z

Deursen, T. Xie (Eds.), 43rd IEEE/ACM International Conference on Software

Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021, IEEE, 2021, pp. 574–

586. URL: https://doi.org/10.1109/ICSE43902.2021.00060. doi:10.1109/

ICSE43902.2021.00060.

[22] R. Jongeling, F. Ciccozzi, A. Cicchetti, J. Carlson, Lightweight consistency check-1255

ing for agile model-based development in practice, J. Object Technol. 18 (2019)

11:1–20. URL: https://doi.org/10.5381/jot.2019.18.2.a11. doi:10.5381/

jot.2019.18.2.a11.

[23] C. Mayr-Dorn, R. Kretschmer, A. Egyed, R. Heradio, D. Fernández-Amorós,

Inconsistency-tolerating guidance for software engineering processes, in: N. Ju-1260

risto, P. Lago, G. Murphy (Eds.), 43rd IEEE/ACM International Conference on

Software Engineering: New Ideas and Emerging Results, ICSE (NIER) 2021,

Madrid, Spain, May 25-28, 2021, IEEE, 2021, pp. 6–10. URL: https://doi.

org/10.1109/ICSE-NIER52604.2021.00010. doi:10.1109/ICSE-NIER52604.

2021.00010.1265

[24] A. Demuth, M. Riedl-Ehrenleitner, A. Egyed, Efficient detection of inconsisten-

cies in a multi-developer engineering environment, in: D. Lo, S. Apel, S. Khur-

shid (Eds.), Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016,

ACM, 2016, pp. 590–601. URL: https://doi.org/10.1145/2970276.2970304.1270

doi:10.1145/2970276.2970304.

[25] Y. Limón, E. Bárcenas, E. Benítez-Guerrero, G. Molero, On the consistency of

context-aware systems, J. Intell. Fuzzy Syst. 34 (2018) 3373–3383. URL: https:

//doi.org/10.3233/JIFS-169518. doi:10.3233/JIFS-169518.

[26] J. Chen, Y. Qin, H. Wang, C. Xu, Simulation might change your results: A com-1275

parison of context-aware system input validation in simulated and physical en-

vironments, J. Comput. Sci. Technol. 37 (2022) 83–105. URL: https://doi.org/

10.1007/s11390-021-1669-1. doi:10.1007/s11390-021-1669-1.

59

https://doi.org/10.1109/ICSE43902.2021.00060
http://dx.doi.org/10.1109/ICSE43902.2021.00060
http://dx.doi.org/10.1109/ICSE43902.2021.00060
http://dx.doi.org/10.1109/ICSE43902.2021.00060
https://doi.org/10.5381/jot.2019.18.2.a11
http://dx.doi.org/10.5381/jot.2019.18.2.a11
http://dx.doi.org/10.5381/jot.2019.18.2.a11
http://dx.doi.org/10.5381/jot.2019.18.2.a11
https://doi.org/10.1109/ICSE-NIER52604.2021.00010
https://doi.org/10.1109/ICSE-NIER52604.2021.00010
https://doi.org/10.1109/ICSE-NIER52604.2021.00010
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00010
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00010
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00010
https://doi.org/10.1145/2970276.2970304
http://dx.doi.org/10.1145/2970276.2970304
https://doi.org/10.3233/JIFS-169518
https://doi.org/10.3233/JIFS-169518
https://doi.org/10.3233/JIFS-169518
http://dx.doi.org/10.3233/JIFS-169518
https://doi.org/10.1007/s11390-021-1669-1
https://doi.org/10.1007/s11390-021-1669-1
https://doi.org/10.1007/s11390-021-1669-1
http://dx.doi.org/10.1007/s11390-021-1669-1

[27] Y. Limón, E. Bárcenas, E. Benítez-Guerrero, J. Gomez, Consistency checking

of attention aware systems, in: M. J. O. Galindo, J. R. Marcial-Romero, C. Z.1280

Cortés, P. P. Parra (Eds.), Proceedings of the Twelfth Latin American Work-

shop on Logic/Languages, Algorithms and New Methods of Reasoning, Puebla,

Mexico, November 15, 2019, volume 2585 of CEURWorkshop Proceedings, CEUR-

WS.org, 2019, pp. 13–23. URL: http://ceur-ws.org/Vol-2585/paper2.pdf.

[28] C. Mayr-Dorn, M. Vierhauser, S. Bichler, F. Keplinger, J. Cleland-Huang,1285

A. Egyed, T. Mehofer, Supporting quality assurance with automated process-

centric quality constraints checking, in: N. Juristo, A. van Deursen, T. Xie (Eds.),

43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021,

Madrid, Spain, 22-30 May 2021, IEEE, 2021, pp. 1298–1310. URL: https://doi.

org/10.1109/ICSE43902.2021.00118. doi:10.1109/ICSE43902.2021.00118.1290

[29] pollen Sense, Pollen wise - what’s in your air, when and where, https://play.

google.com/store/apps/details?id=com.PollenSense.PollenWise, 2022.

[30] P. Kuo, S. Lin, J. Hu, C. Huang, Multi-sensor context-aware based chatbot model:

An application of humanoid companion robot, Sensors 21 (2021) 5132. URL:

https://doi.org/10.3390/s21155132. doi:10.3390/s21155132.1295

[31] Waymo, Waymo, https://waymo.com, 2022.

[32] A. Davies, The numbers don’t lie: Self-driving cars

are getting good., https://www.wired.com/2017/02/

california-dmv-autonomous-car-disengagement/, 2017.

[33] I. Yoon, D. K. Noh, Adaptive data collection using UAV with wireless power1300

transfer for wireless rechargeable sensor networks, IEEE Access 10 (2022) 9729–

9743. URL: https://doi.org/10.1109/ACCESS.2022.3144846. doi:10.1109/

ACCESS.2022.3144846.

[34] N. Mazumdar, S. Roy, A. Nag, J. P. Singh, A buffer-aware dynamic UAV

trajectory design for data collection in resource-constrained iot frameworks,1305

60

http://ceur-ws.org/Vol-2585/paper2.pdf
https://doi.org/10.1109/ICSE43902.2021.00118
https://doi.org/10.1109/ICSE43902.2021.00118
https://doi.org/10.1109/ICSE43902.2021.00118
http://dx.doi.org/10.1109/ICSE43902.2021.00118
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise
https://doi.org/10.3390/s21155132
http://dx.doi.org/10.3390/s21155132
https://waymo.com
https://www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/
https://www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/
https://www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/
https://doi.org/10.1109/ACCESS.2022.3144846
http://dx.doi.org/10.1109/ACCESS.2022.3144846
http://dx.doi.org/10.1109/ACCESS.2022.3144846
http://dx.doi.org/10.1109/ACCESS.2022.3144846

Comput. Electr. Eng. 100 (2022) 107934. URL: https://doi.org/10.1016/j.

compeleceng.2022.107934. doi:10.1016/j.compeleceng.2022.107934.

[35] M. Lahmeri, M. A. Kishk, M. Alouini, Charging techniques for uav-assisted

data collection: Is laser power beaming the answer?, IEEE Commun. Mag.

60 (2022) 50–56. URL: https://doi.org/10.1109/MCOM.001.2100871. doi:10.1310

1109/MCOM.001.2100871.

[36] C. Xu, S. Cheung, C. Lo, K. Leung, J. Wei, Cabot: On the ontology for the

middleware support of context-aware pervasive applications, in: H. Jin, G. R.

Gao, Z. Xu, H. Chen (Eds.), Network and Parallel Computing, IFIP Interna-

tional Conference, NPC 2004, Wuhan, China, October 18-20, 2004, Proceed-1315

ings, volume 3222 of Lecture Notes in Computer Science, Springer, 2004, pp. 568–

575. URL: https://doi.org/10.1007/978-3-540-30141-7_85. doi:10.1007/

978-3-540-30141-7_85.

[37] C. Xu, S. C. Cheung, X. Ma, C. Cao, J. Lu, Adam: Identifying defects in context-

aware adaptation, J. Syst. Softw. 85 (2012) 2812–2828. URL: https://doi.org/1320

10.1016/j.jss.2012.04.078. doi:10.1016/j.jss.2012.04.078.

[38] A. L. Murphy, G. P. Picco, G. Roman, LIME: A coordination model and

middleware supporting mobility of hosts and agents, ACM Trans. Softw.

Eng. Methodol. 15 (2006) 279–328. URL: https://doi.org/10.1145/1151695.

1151698. doi:10.1145/1151695.1151698.1325

[39] L. Capra, W. Emmerich, C. Mascolo, CARISMA: context-aware reflective mid-

dleware system for mobile applications, IEEE Trans. Software Eng. 29 (2003)

929–945. URL: https://doi.org/10.1109/TSE.2003.1237173. doi:10.1109/

TSE.2003.1237173.

[40] S. Chaudhuri, K. Ganjam, V. Ganti, R. Motwani, Robust and efficient fuzzy match1330

for online data cleaning, in: Z. Ives, Y. Papakonstantinou, A. Halevy (Eds.), Pro-

ceedings of the 2003 ACMSIGMOD International Conference onManagement of

Data, San Diego, California, USA, June 9-12, 2003, ACM, 2003, pp. 313–324. URL:

https://doi.org/10.1145/872757.872796. doi:10.1145/872757.872796.

61

https://doi.org/10.1016/j.compeleceng.2022.107934
https://doi.org/10.1016/j.compeleceng.2022.107934
https://doi.org/10.1016/j.compeleceng.2022.107934
http://dx.doi.org/10.1016/j.compeleceng.2022.107934
https://doi.org/10.1109/MCOM.001.2100871
http://dx.doi.org/10.1109/MCOM.001.2100871
http://dx.doi.org/10.1109/MCOM.001.2100871
http://dx.doi.org/10.1109/MCOM.001.2100871
https://doi.org/10.1007/978-3-540-30141-7_85
http://dx.doi.org/10.1007/978-3-540-30141-7_85
http://dx.doi.org/10.1007/978-3-540-30141-7_85
http://dx.doi.org/10.1007/978-3-540-30141-7_85
https://doi.org/10.1016/j.jss.2012.04.078
https://doi.org/10.1016/j.jss.2012.04.078
https://doi.org/10.1016/j.jss.2012.04.078
http://dx.doi.org/10.1016/j.jss.2012.04.078
https://doi.org/10.1145/1151695.1151698
https://doi.org/10.1145/1151695.1151698
https://doi.org/10.1145/1151695.1151698
http://dx.doi.org/10.1145/1151695.1151698
https://doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1109/TSE.2003.1237173
https://doi.org/10.1145/872757.872796
http://dx.doi.org/10.1145/872757.872796

[41] P. Darcy, B. Stantic, A. Sattar, An intelligent approach to handle false-positive ra-1335

dio frequency identification anomalies, Intell. Data Anal. 15 (2011) 931–954. URL:

https://doi.org/10.3233/IDA-2011-0503. doi:10.3233/IDA-2011-0503.

[42] X. L. P. X. Yi WEI, Mei XUE, Data fusing and joint training for learning

with noisy labels, Frontiers of Computer Science 16 (2022) 166338. URL:

https://journal.hep.com.cn/fcs/EN/abstract/article_30329.shtml.1340

doi:10.1007/s11704-021-1208-9.

[43] C. Chun, K. M. Jeon, T. Kim, W. Choi, Drone noise reduction using deep con-

volutional autoencoder for UAV acoustic sensor networks, in: T. Abdelza-

her, X. Wang, I. Demirkol (Eds.), 16th IEEE International Conference on Mo-

bile Ad Hoc and Sensor Systems Workshops, MASS Workshops 2019, Mon-1345

terey, CA, USA, November 4-7, 2019, IEEE, 2019, pp. 168–169. URL: https:

//doi.org/10.1109/MASSW.2019.00043. doi:10.1109/MASSW.2019.00043.

[44] Z. Tan, A. H. T. Nguyen, A. W. H. Khong, An efficient dilated convolutional neu-

ral network for UAV noise reduction at low input SNR, in: T. F. Zheng, H. Yu,

J. Dang, W. Siu, H. Kiya (Eds.), 2019 Asia-Pacific Signal and Information Process-1350

ing Association Annual Summit and Conference, APSIPA ASC 2019, Lanzhou,

China, November 18-21, 2019, 2019, pp. 1885–1892. URL: https://doi.org/10.

1109/APSIPAASC47483.2019.9023324. doi:10.1109/APSIPAASC47483.2019.

9023324.

[45] C. Xu, S. Cheung, W. K. Chan, Goal-directed context validation for adaptive1355

ubiquitous systems, in: B. H. Cheng, R. de Lemos, S. Fickas, D. Garlan, M. Litoiu,

J. Magee, H. A. Müller, R. N. Taylor (Eds.), 2007 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems, SEAMS 2007, Minneapo-

lis Minnesota, USA, May 20-26, 2007, IEEE Computer Society, 2007, p. 17. URL:

https://doi.org/10.1109/SEAMS.2007.8. doi:10.1109/SEAMS.2007.8.1360

[46] C. Chen, H. Wang, L. Zhang, C. Xu, P. Yu, Minimizing link generation in con-

straint checking for context inconsistency detection., in: F. Pastore, L. Zhang

(Eds.), 2022 IEEE International Symposium on Software Reliability Engineering,

62

https://doi.org/10.3233/IDA-2011-0503
http://dx.doi.org/10.3233/IDA-2011-0503
https://journal.hep.com.cn/fcs/EN/abstract/article_30329.shtml
http://dx.doi.org/10.1007/s11704-021-1208-9
https://doi.org/10.1109/MASSW.2019.00043
https://doi.org/10.1109/MASSW.2019.00043
https://doi.org/10.1109/MASSW.2019.00043
http://dx.doi.org/10.1109/MASSW.2019.00043
https://doi.org/10.1109/APSIPAASC47483.2019.9023324
https://doi.org/10.1109/APSIPAASC47483.2019.9023324
https://doi.org/10.1109/APSIPAASC47483.2019.9023324
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023324
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023324
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023324
https://doi.org/10.1109/SEAMS.2007.8
http://dx.doi.org/10.1109/SEAMS.2007.8

ISSRE 2022, Charlotte, North Carolina, USA, Oct-Nov 2022, IEEE, 2022, pp. 13–

24.1365

[47] J. Chomicki, J. Lobo, S. A. Naqvi, Conflict resolution using logic programming,

IEEE Trans. Knowl. Data Eng. 15 (2003) 244–249. URL: https://doi.org/10.

1109/TKDE.2003.1161596. doi:10.1109/TKDE.2003.1161596.

[48] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, J. Lu, Managing quality of context in pervasive

computing, in: Sixth International Conference on Quality Software (QSIC 2006),1370

26-28 October 2006, Beijing, China, IEEE Computer Society, 2006, pp. 193–200.

URL: https://doi.org/10.1109/QSIC.2006.38. doi:10.1109/QSIC.2006.38.

[49] C. Xu, S. Cheung, W. K. Chan, C. Ye, Heuristics-based strategies for resolv-

ing context inconsistencies in pervasive computing applications, in: 28th IEEE

International Conference on Distributed Computing Systems (ICDCS 2008), 17-1375

20 June 2008, Beijing, China, IEEE Computer Society, 2008, pp. 713–721. URL:

https://doi.org/10.1109/ICDCS.2008.46. doi:10.1109/ICDCS.2008.46.

[50] C. Chen, C. Ye, H. Jacobsen, Hybrid context inconsistency resolution for

context-aware services, in: D. Cook, J. Indulska (Eds.), Ninth Annual IEEE

International Conference on Pervasive Computing and Communications, Per-1380

Com 2011, 21-25 March 2011, Seattle, WA, USA, Proceedings, IEEE, 2011,

pp. 10–19. URL: https://doi.org/10.1109/PERCOM.2011.5767574. doi:10.

1109/PERCOM.2011.5767574.

[51] C. Xu, S. C. Cheung, W. K. Chan, C. Ye, On impact-oriented automatic

resolution of pervasive context inconsistency, in: I. Crnkovic, A. Bertolino1385

(Eds.), Proceedings of the 6th joint meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007,

ACM, 2007, pp. 569–572. URL: https://doi.org/10.1145/1287624.1287712.

doi:10.1145/1287624.1287712.1390

[52] C. Xu, X. Ma, C. Cao, J. Lu, Minimizing the side effect of context inconsis-

tency resolution for ubiquitous computing, in: A. Puiatti, T. Gu (Eds.), Mo-

63

https://doi.org/10.1109/TKDE.2003.1161596
https://doi.org/10.1109/TKDE.2003.1161596
https://doi.org/10.1109/TKDE.2003.1161596
http://dx.doi.org/10.1109/TKDE.2003.1161596
https://doi.org/10.1109/QSIC.2006.38
http://dx.doi.org/10.1109/QSIC.2006.38
https://doi.org/10.1109/ICDCS.2008.46
http://dx.doi.org/10.1109/ICDCS.2008.46
https://doi.org/10.1109/PERCOM.2011.5767574
http://dx.doi.org/10.1109/PERCOM.2011.5767574
http://dx.doi.org/10.1109/PERCOM.2011.5767574
http://dx.doi.org/10.1109/PERCOM.2011.5767574
https://doi.org/10.1145/1287624.1287712
http://dx.doi.org/10.1145/1287624.1287712

bile and Ubiquitous Systems: Computing, Networking, and Services - 8th In-

ternational ICST Conference, MobiQuitous 2011, Copenhagen, Denmark, De-

cember 6-9, 2011, Revised Selected Papers, volume 104 of Lecture Notes of1395

the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, Springer, 2011, pp. 285–297. URL: https://doi.org/10.1007/

978-3-642-30973-1_29. doi:10.1007/978-3-642-30973-1_29.

[53] D. E. Khelladi, R. Kretschmer, A. Egyed, Detecting and exploring side ef-

fects when repairing model inconsistencies, in: O. Nierstrasz, J. Gray, B. C.1400

d. S. Oliveira (Eds.), Proceedings of the 12th ACM SIGPLAN International Con-

ference on Software Language Engineering, SLE 2019, Athens, Greece, Octo-

ber 20-22, 2019, ACM, 2019, pp. 113–126. URL: https://doi.org/10.1145/

3357766.3359546. doi:10.1145/3357766.3359546.

64

https://doi.org/10.1007/978-3-642-30973-1_29
https://doi.org/10.1007/978-3-642-30973-1_29
https://doi.org/10.1007/978-3-642-30973-1_29
http://dx.doi.org/10.1007/978-3-642-30973-1_29
https://doi.org/10.1145/3357766.3359546
https://doi.org/10.1145/3357766.3359546
https://doi.org/10.1145/3357766.3359546
http://dx.doi.org/10.1145/3357766.3359546

1. Appendix1405

This appendix is to complement our main article with more details on INFuse’s

fusion checking and time complexity analyses of different checking techniques. In

the following, we first give definitions for necessary functions and operators, and

then elaborate on the checking semantics for INFuse’s truth value evaluation and

link generation (for other formula types, not discussed in the main article). In the1410

end, we give time complexity analyses for existing checking techniques.

1.1. Functions and Operators

We define necessary functions and operators below.

1.1.1. Affected function

As aforementioned, we define the Affected function to indicate whether a formula1415

itself or its nested subformula is affected by the context changes given in a constraint

checking task. Consider a specific formula inside a consistency constraint. The Af-

fected function returns T (meaning True), if and only if the formula itself or any of

its contained subformula(s) references a context involved in any 𝐴𝑆𝑒𝑡 , 𝐷𝑆𝑒𝑡 , or 𝑈𝑆𝑒𝑡

associated with this constraint; otherwise, it returns F (meaning False). Formally,1420

• Affected(∀/∃𝑣 ∈ 𝐶 (𝑓)) = T, if 𝐴𝑆𝑒𝑡 ≠ ∅ or 𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅ or Affected(𝑓)

= T; otherwise, F.

• Affected((𝑓1) and/or/implies (𝑓2)) = T, if Affected(𝑓1) = T or Affected(𝑓2) = T;

otherwise, F.

• Affected(not (𝑓)) = T, if Affected(𝑓) = T; otherwise, F.1425

• Affected(𝑏𝑓 𝑢𝑛𝑐 (𝑣1, 𝑣2, · · · , 𝑣𝑛)) = F.

1.1.2. Flip and FlipSet functions

Wedefine the Flip function to reverse a link’s linkTypewithout changing the link’s

variable assignments, and the FlipSet function is used to apply the Flip function to

each link in a link set. Formally,1430

65

• Flip(violated, variable assignments) = (satisfied, variable assignments).

• Flip(satisfied, variable assignments) = (violated, variable assignments).

• FlipSet(𝑆) = {Flip(𝑙) | 𝑙 ∈ 𝑆}.

1.1.3. Type and Assignments functions

We define the Type and Assignments functions to retrieve a link’s specific link-1435

Type and variable assignments information from a given link, respectively, i.e.,

• Type(𝑙) = 𝑙 .linkType.

• Assignments(𝑙) = 𝑙 .variable assignments.

1.1.4. Concatenate function and ⊗ operator

We define the Concatenate function to combine two links with the same linkType1440

into a new link, consisting of this linkType and the union of all concerned variable

assignments from the two links. Further, the ⊗ operator concatenates two link sets

by applying the Concatenate function to the link pairs formed by every link from set

𝑆1 and every link from set 𝑆2, i.e.,

• Concatenate(𝑙1, 𝑙2) = (Type(𝑙1), Assignments(𝑙1) ∪ Assignments(𝑙2)).1445

• 𝑆1⊗𝑆2 = {Concatenate(𝑙1, 𝑙2) | 𝑙1 ∈ 𝑆1∧𝑙2 ∈ 𝑆2}, if 𝑆1 ≠ ∅ and 𝑆2 ≠ ∅; otherwise,

𝑆1 ∪ 𝑆2.

1.2. Truth Value Evaluation

In the following, we give INFuse’s truth value evaluation semantics for the ∃, or,

and implies formulas (we have earlier introduced the semantics for other formula1450

types, i.e., ∀, and, not, and 𝑏𝑓 𝑢𝑛𝑐 , in Section 3.3).

1.2.1. Existential formula, i.e., ∃𝑣 ∈ 𝐶 (𝑓)

Fig. 29 and Fig. 30 give INFuse’s entire and partial truth value evaluation semantics

for the existential formula. Similar to that for the universal formula we discussed

earlier, this semantics also invokes evalentire or evalpartial functions (shown in Fig. 31)1455

to calculate truth values for subformula 𝑓 concerning different elements.

66

𝜏entire [∃𝑣 ∈ 𝐶 (𝑓)]𝛼 = F ∨ 𝜏entire [𝑓]bind((𝑣,𝑥1),𝛼) ∨ · · · ∨ 𝜏entire [𝑓]bind((𝑣,𝑥𝑛),𝛼) |𝑥𝑖 ∈ 𝐶
Figure 29: INFuse’s entire truth value evaluation semantics for the existential formula

𝜏
partial

[∃𝑣 ∈ 𝐶 (𝑓)]𝛼 =

(1) 𝜏0 [∃𝑣 ∈ 𝐶 (𝑓)]𝛼 , if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(2) 𝜏0 [∃𝑣 ∈ 𝐶 (𝑓)]𝛼 ∨ 𝑡1 ∨ · · · ∨ 𝑡𝑎,where (𝑡1, · · · , 𝑡𝑎) = evalentire (𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡),

if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 ≠ ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(3) F ∨ 𝜏0 [𝑓]bind((𝑣,𝑥1),𝛼) ∨ · · · ∨ 𝜏0 [𝑓]bind((𝑣,𝑥𝑛−𝑎−𝑢),𝛼) ∨ 𝑡1 ∨ · · · ∨ 𝑡𝑎+𝑢 | 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡)),

where (𝑡1, · · · , 𝑡𝑎+𝑢) = evalentire (𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡),

if Affected(𝑓) = F and (𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).

(4) F ∨ 𝑡1 ∨ · · · ∨ 𝑡𝑛,where (𝑡1, · · · , 𝑡𝑛) = eval
partial

(𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(5) F ∨ 𝑡1 ∨ · · · ∨ 𝑡𝑛,where (𝑡1, · · · , 𝑡𝑎+𝑢) = evalentire (𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡)

and (𝑡𝑎+𝑢+1, · · · , 𝑡𝑛) = eval
partial

(𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡)),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 ≠ ∅ or 𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).
Figure 30: INFuse’s partial truth value evaluation semantics for the existential formula

evalentire (𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝑆𝑒𝑡) =

(1) 𝜏entire [𝑓]bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ 𝜏entire [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

if ∃𝑣 ∈ 𝐶 (𝑓) is a concurrent point;

(2) 𝜏entire [𝑓]bind((𝑣,𝑥1),𝛼) ; · · · ; 𝜏entire [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

eval
partial

(𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝑆𝑒𝑡) =

(1) 𝜏
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ 𝜏partial [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

if ∃𝑣 ∈ 𝐶 (𝑓) is a concurrent point;

(2) 𝜏
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ; · · · ; 𝜏partial [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

Figure 31: Semantics of the eval functions (entire and partial checking)

67

𝜏entire [(𝑓1) or (𝑓2)]𝛼 = 𝜏entire [𝑓1]𝛼 ∨ 𝜏entire [𝑓2]𝛼

𝜏entire [(𝑓1) implies (𝑓2)]𝛼 = ¬𝜏entire [𝑓1]𝛼 ∨ 𝜏entire [𝑓2]𝛼
Figure 32: INFuse’s entire truth value evaluation semantics for or and implies formulas

𝜏
partial

[(𝑓1) or (𝑓2)]𝛼 =

(1) 𝜏0 [(𝑓1) or (𝑓2)]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = F.

(2) 𝜏0 [𝑓1]𝛼 ∨ 𝜏partial [𝑓2]𝛼 , if Affected(𝑓1) = F,Affected(𝑓2) = T.

(3) 𝜏
partial

[𝑓1]𝛼 ∨ 𝜏0 [𝑓2]𝛼 , if Affected(𝑓1) = T,Affected(𝑓2) = F.

(4) 𝜏
partial

[𝑓1]𝛼 ∨ 𝜏partial [𝑓2]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = T.

𝜏
partial

[(𝑓1) implies (𝑓2)]𝛼 =

(1) 𝜏0 [(𝑓1) implies (𝑓2)]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = F.

(2) ¬𝜏0 [𝑓1]𝛼 ∨ 𝜏partial [𝑓2]𝛼 , if Affected(𝑓1) = F,Affected(𝑓2) = T.

(3) ¬𝜏
partial

[𝑓1]𝛼 ∨ 𝜏0 [𝑓2]𝛼 , if Affected(𝑓1) = T,Affected(𝑓2) = F.

(4) ¬𝜏
partial

[𝑓1]𝛼 ∨ 𝜏partial [𝑓2]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = T.

Figure 33: INFuse’s partial truth value evaluation semantics for or and implies formulas

Lentire [∃𝑣 ∈ 𝐶 (𝑓)]𝛼 =

{𝑙 | 𝑙 ∈ {(satisfied, {(𝑣, 𝑥𝑖)})} ⊗ Lentire [𝑓]bind((𝑣,𝑥𝑖),𝛼) } | 𝑥𝑖 ∈ 𝐶 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = T) .
Figure 34: INFuse’s entire link generation semantics for the existential formula

1.2.2. or and implies formulas , i.e., (𝑓1) or/implies (𝑓2)

Fig. 32 gives INFuse’s entire truth value evaluation semantics for the two formulas.

Similar to the and formula, or and implies formulas reference no direct context,

and we only need to consider the Affected function on their subformulas 𝑓1 and 𝑓2.1460

Incremental evaluation would be applied to the affected subformulas, as shown in

Fig. 33.

1.3. Link Generation

In the following, we give INFuse’s link generation semantics for other formulas

not discussed earlier (i.e., ∃, and, or, implies, not, 𝑏𝑓 𝑢𝑛𝑐), while the ∀ formula has1465

been introduced Section 3.3.

68

L
partial

[∃𝑣 ∈ 𝐶 (𝑓)]𝛼 =

(1) L0 [∃𝑣 ∈ 𝐶 (𝑓)]𝛼 , if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(2) L0 [∃𝑣 ∈ 𝐶 (𝑓)]𝛼 ∪ ({(satisfied, {𝑣,𝑦1})} ⊗ 𝑙1) ∪ · · · ∪ ({(satisfied, {𝑣,𝑦𝑎′ })} ⊗ 𝑙𝑎′),

where (𝑙1, · · · , 𝑙𝑎′) = gen
entire
(L[𝑓]

bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∧ 𝜏 [𝑓]bind((𝑣,𝑦 𝑗),𝛼) = T),

if Affected(𝑓) = F and (𝐴𝑆𝑒𝑡 ≠ ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(3) ({(satisfied, {𝑣,𝑦1})} ⊗ 𝑙1) ∪ · · · ∪ ({(satisfied, {𝑣,𝑦𝑎′+𝑢′ })} ⊗ 𝑙𝑎′+𝑢′)∪

{𝑙 | 𝑙 ∈ {(satisfied, {(𝑣, 𝑥𝑖)})} ⊗ L0 [𝑓]bind((𝑣,𝑥𝑖),𝛼) }| 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡) ∧ 𝜏 [𝑓]
bind((𝑣,𝑥𝑖),𝛼) = T,

where (𝑙1, · · · , 𝑙𝑎′+𝑢′) = gen
entire
(L[𝑓]

bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡 ∧ 𝜏 [𝑓]
bind((𝑣,𝑦 𝑗),𝛼) = T),

if Affected(𝑓) = F and (𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).

(4) ∅ ∪ ({(satisfied, {𝑣, 𝑥1})} ⊗ 𝑙1) ∪ · · · ∪ ({(satisfied, {𝑣, 𝑥𝑛′ })} ⊗ 𝑙𝑛′),

where (𝑙1, · · · , 𝑙𝑛′) = gen
partial

(L[𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = T),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 = ∅ and 𝐷𝑆𝑒𝑡 = ∅ and𝑈𝑆𝑒𝑡 = ∅).

(5) ∅ ∪ ({(satisfied, {𝑣,𝑦1})} ⊗ 𝑙1) ∪ · · · ∪ ({(satisfied, {𝑣,𝑦𝑛′ })} ⊗ 𝑙𝑛′),

where (𝑙1, · · · , 𝑙𝑎′+𝑢′) = gen
entire
(L[𝑓]

bind((𝑣,𝑦 𝑗),𝛼) | 𝑦 𝑗 ∈ 𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡 ∧ 𝜏 [𝑓]
bind((𝑣,𝑦 𝑗),𝛼) = T)

and (𝑙𝑎′+𝑢′+1, · · · 𝑙𝑛′) = gen
partial

(L[𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝐶 \(𝐴𝑆𝑒𝑡 ∪𝑈𝑆𝑒𝑡) ∧ 𝜏 [𝑓]

bind((𝑣,𝑥𝑖),𝛼) = T),

if Affected(𝑓) = T and (𝐴𝑆𝑒𝑡 ≠ ∅ or 𝐷𝑆𝑒𝑡 ≠ ∅ or𝑈𝑆𝑒𝑡 ≠ ∅).
Figure 35: INFuse’s partial link generation semantics for the existential formula

1.3.1. Existential formula , i.e., ∃𝑣 ∈ 𝐶 (𝑓)

Fig. 34 and Fig. 35 give INFuse’s entire and partial link generation semantics for

the existential formula. Similar to that for the universal formula, it also invokes the

gen
entire

and gen
partial

functions (shown in Fig. 36) to generate links for subformula 𝑓1470

concerning different elements.

1.3.2. and, or, and implies formulas , i.e., (𝑓1) and/or/implies (𝑓2)

For ease of understanding, we take the and formula as an example to explain the

principles in its link generation:

• If both 𝑓1 and 𝑓2 are evaluated to true, they together decide the satisfaction of1475

this and formula. Then, the ⊗ operator is used to generate links that explain

the formula’s satisfaction.

• If both 𝑓1 and 𝑓2 are evaluated to false, either of them can decide the violation of

69

genentire (L[𝑓]bind((𝑣,𝑥𝑖),𝛼) |𝑥𝑖 ∈ 𝑆𝑒𝑡 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = T)

(1) Lentire [𝑓]bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ Lentire [𝑓]entire((𝑣,𝑥𝑠),𝛼) ,

if ∃𝑣 ∈ 𝐶 (𝑓) is a concurrent point.

(2) Lentire [𝑓]bind((𝑣,𝑥1),𝛼) ; · · · ; Lentire [𝑓]bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

gen
partial

(L[𝑓]
bind((𝑣,𝑥𝑖),𝛼) | 𝑥𝑖 ∈ 𝑆𝑒𝑡 ∧ 𝜏 [𝑓]bind((𝑣,𝑥𝑖),𝛼) = T)

(1) L
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ∥ · · · ∥ Lpartial

[𝑓]
bind((𝑣,𝑥𝑠),𝛼) ,

if ∃𝑣 ∈ 𝐶 (𝑓) is a concurrent point.

(2) L
partial

[𝑓]
bind((𝑣,𝑥1),𝛼) ; · · · ; Lpartial

[𝑓]
bind((𝑣,𝑥𝑠),𝛼) ,

otherwise.

Figure 36: Semantics of the gen functions (entire and partial checking).

Lentire [(𝑓1) and (𝑓2)]𝛼 =

(1) Lentire [𝑓1]𝛼 ⊗ Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

(2) Lentire [𝑓1]𝛼 ∪ Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

(3) Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

(4) Lentire [𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

Lentire [(𝑓1) or (𝑓2)]𝛼 =

(1) Lentire [𝑓1]𝛼 ∪ Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

(2) Lentire [𝑓1]𝛼 ⊗ Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

(3) Lentire [𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

(4) Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

Lentire [(𝑓1) implies (𝑓2)]𝛼 =

(1) FlipSet(Lentire [𝑓1]𝛼) ⊗ Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

(2) FlipSet(Lentire [𝑓1]𝛼) ∪ Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

(3) Lentire [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

(4) FlipSet(Lentire [𝑓1]𝛼), if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

Figure 37: INFuse’s entire link generation semantics for and, or, and implies formulas

this and formula. Then, the union of links from 𝑓1 and 𝑓2 explains the formula’s

violation.1480

70

L
partial

[(𝑓1) and (𝑓2)]𝛼 =

(1) L0 [(𝑓1) and (𝑓2)]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = F.

(2) a. L
partial

[𝑓1]𝛼 ⊗ L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

b. L
partial

[𝑓1]𝛼 ∪ L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

c. L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

d. L
partial

[𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

if Affected(𝑓1) = T,Affected(𝑓2) = F.

(3) a. L0 [𝑓1]𝛼 ⊗ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

b. L0 [𝑓1]𝛼 ∪ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

c. L
partial

[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

d. L0 [𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

if Affected(𝑓1) = F,Affected(𝑓2) = T.

(4) a. L
partial

[𝑓1]𝛼 ⊗ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

b. L
partial

[𝑓1]𝛼 ∪ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

c. L
partial

[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

d. L
partial

[𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

if Affected(𝑓1) = Affected(𝑓2) = T.

Figure 38: INFuse’s partial link generation semantics for the and formula

• If one subformula is evaluated to true and the other is evaluated to false, then

the latter can decide the violation of this and formula. Then, links coming from

the latter explain the formula’s violation.

The principles for the or and implies formulas are similar. We thus give INFuse’s

entire link generation semantics for these three formulas in Fig. 37.1485

Similar to INFuse’s truth value evaluation semantics for the three formulas, IN-

Fuse can also conduct incremental link generation according to the Affected function

on subformulas 𝑓1 and 𝑓2. We similarly give INFuse’s partial link generation semantics

for the and, or, and implies formulas in Fig. 38, Fig. 39, and Fig. 40 respectively.

71

L
partial

[(𝑓1) or (𝑓2)]𝛼 =

(1) L0 [(𝑓1) or (𝑓2)]𝛼 , if Affected(𝑓1) = Affected(𝑓2) = F.

(2) a. L
partial

[𝑓1]𝛼 ∪ L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

b. L
partial

[𝑓1]𝛼 ⊗ L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

c. L
partial

[𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

d. L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

if Affected(𝑓1) = T,Affected(𝑓2) = F.

(3) a. L0 [𝑓1]𝛼 ∪ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

b. L0 [𝑓1]𝛼 ⊗ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

c. L0 [𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

d. L
partial

[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

if Affected(𝑓1) = F,Affected(𝑓2) = T.

(4) a. L
partial

[𝑓1]𝛼 ∪ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

b. L
partial

[𝑓1]𝛼 ⊗ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

c. L
partial

[𝑓1]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

d. L
partial

[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

if Affected(𝑓1) = Affected(𝑓2) = T.

Figure 39: INFuse’s partial link generation semantics for the or formula

not and 𝑏𝑓 𝑢𝑛𝑐 formulas , i.e, not (𝑓) and 𝑏𝑓 𝑢𝑛𝑐 (𝑣1, · · · , 𝑣𝑛)1490

Fig. 41 gives INFuse’s entire link generation semantics for the not and 𝑏𝑓 𝑢𝑛𝑐 for-

mulas. For the not formula, it inverts the linkType of links coming from its subformula

𝑓 . For the 𝑏𝑓 𝑢𝑛𝑐 formula, it always generates an empty link set since the links that

contain variables in the𝑏𝑓 𝑢𝑛𝑐 formula are supposed to be generated where these vari-

ables are defined (i.e., at upper-layer universal and existential formulas). Fig. 42 gives1495

INFuse’s partial link generation semantics for the two formulas. For the not formula,

the Affected function on its subformula 𝑓 would internally decide the reusability of

its previously generated links. The 𝑏𝑓 𝑢𝑛𝑐 formula would still generate an empty link

set.

72

L
partial

[(𝑓1) implies (𝑓2)]𝛼 =

(1) L0 [(𝑓1) implies (𝑓2)]𝛼 , if affected(𝑓1) = affected(𝑓2) = F.

(2) a. FlipSet(L
partial

[𝑓1]𝛼) ⊗ L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

b. FlipSet(L
partial

[𝑓1]𝛼) ∪ L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

c. L0 [𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

d. FlipSet(L
partial

[𝑓1]𝛼), if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

if Affected(𝑓1) = T,Affected(𝑓2) = F.

(3) a. FlipSet(L0 [𝑓1]𝛼) ⊗ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

b. FlipSet(L0 [𝑓1]𝛼) ∪ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

c. L
partial

[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

d. FlipSet(L0 [𝑓1]𝛼), if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

if Affected(𝑓1) = F,Affected(𝑓2) = T.

(4) a. FlipSet(L
partial

[𝑓1]𝛼) ⊗ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = T, 𝜏 [𝑓2]𝛼 = F.

b. FlipSet(L
partial

[𝑓1]𝛼) ∪ Lpartial
[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = F, 𝜏 [𝑓2]𝛼 = T.

c. L
partial

[𝑓2]𝛼 , if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = T.

d. FlipSet(L
partial

[𝑓1]𝛼), if 𝜏 [𝑓1]𝛼 = 𝜏 [𝑓2]𝛼 = F.

if Affected(𝑓1) = Affected(𝑓2) = T.

Figure 40: INFuse’s partial link generation semantics for the implies formula

Lentire [not (𝑓)]𝛼 = FlipSet(Lentire [𝑓]𝛼).

Lentire [𝑏𝑓 𝑢𝑛𝑐 (𝛾1, · · · , 𝛾𝑛)]𝛼 = ∅.
Figure 41: INFuse’s entire and partial link generation semantics for not and 𝑏𝑓 𝑢𝑛𝑐 formulas

L
partial

[not (𝑓)]𝛼 =

(1) L0 [not (𝑓)]𝛼 , if Affected(𝑓) = F.

(2) FlipSet(L
partial

[𝑓]𝛼), if Affected(𝑓) = T.

L
partial

[𝑏𝑓 𝑢𝑛𝑐 (𝛾1, · · · , 𝛾𝑛)]𝛼 = ∅.
Figure 42: INFuse’s partial link generation semantics for not and 𝑏𝑓 𝑢𝑛𝑐 formulas

73

1500

1.4. Time complexity analysis

In the following, we give the time complexity analysis of existing checking tech-

niques. We use the same notations in Section 3.4 in our main article so that we can

reuse some analysis results. As mentioned in our main article, our base idea is that

we assume that the number of nodes in one sub-tree of node 𝑟 and the number of1505

sub-trees of node 𝑟 both increase or decrease evenly so that we can use their averages

to estimate the time complexity for one single context change, and then estimate the

overall time complexity by multiplying the number of context changes.

Specifically, to estimate the averaged time complexity for one single context change,

we need to know: (1) the average number of nodes in one sub-tree of node 𝑟 per con-1510

text change (let it be 𝑁), (2) the average number of added or removed nodes in one

sub-tree of node 𝑟 per context change (let it be Δ), (3) the average number of updated

(i.e., reevaluating truth values and regenerating links) nodes in one sub-tree of node

𝑟 per context change (let it be 𝑈), (4) the average number of sub-trees of node 𝑟 per

context change (let it be 𝐵). Since ECC conducts full checking (i.e., visiting every node1515

three times) upon every single change, its time complexity of one single change is:

3 · 𝑁 · 𝐵 (23)

ConC spreads the complexity into 𝐵 threads, thus, its time complexity of one single

change is:

3 · 𝑁 (24)

For PCC, it has to consider two cases. On the one hand, if the context change is

an addition change, PCC would visit new added nodes (i.e.,the number is Δ) three1520

times and updated nodes (i.e., the number is 𝑈) twice. Typically, adding new nodes

dominates the time complexity. Therefore, its time complexity of one single change

is:

3 · Δ · 𝐵 (25)

74

On the other hand, if the context change is a deletion change, PCC would remove Δ

nodes and update𝑈 nodes. Therefore, its time complexity of one single change is:1525

(1 · Δ + 2 ·𝑈) · 𝐵 (26)

In the following, we estimate the time complexity of existing checking techniques in

concrete cases based on the above analysis.

Parallel structure. Based on Equation (9) in themain article, initially, the number

of nodes in one sub-tree of node 𝑟 is 𝑂 (𝑒∑𝑘−1
𝑖=1 ℎ𝑖) = 𝑂 (𝑛0

𝑒
).

(1) Only 𝐴𝑆𝑒𝑡 changes. In this case, the number of nodes in one sub-tree of node1530

𝑟 changes from 𝑂 (𝑛0
𝑒
) to 𝑂 (𝑒 + 𝑎

𝑒
· 𝑛0
𝑒
) evenly. Therefore, the average number

of that (a.k.a, 𝑁) is 𝑂 (2𝑒 + 𝑎
2𝑒

· 𝑛0
𝑒
), and the number of newly added nodes is

𝑂 (𝑎
𝑒
· 𝑛0
𝑒
). Since 𝐴𝑆𝑒𝑡 is regarded as a list containing 𝑂 (𝑘𝑎) addition changes,

the average number of newly added nodes in one sub-tree per change (a.k.a, Δ)

is 𝑂 (1
𝑘𝑒
· 𝑛0
𝑒
) Similarly, the number of sub-tree of node 𝑟 changes from 𝑂 (𝑒)1535

to 𝑂 (𝑒 + 𝑎), thus, the average number of that (a.k.a, 𝐵) is 𝑂 (2𝑒 + 𝑎
2
). Based on

the time complexity analysis of INFuse in our main article, if every context is

affected by one context change respectively, the average number of updated

nodes is 𝑂 (1
2
∑𝑘−1

𝑖=1 (ℎ − ℎ𝑖)). Since there are 𝑘 contexts in total, the average

number of updated nodes per context change (a.k.a, 𝑈) is 𝑂 (1
2𝑘

∑𝑘−1
𝑖=1 (ℎ − ℎ𝑖)).1540

Therefore, we can estimate time complexities of existing techniques for one

single context change as follows:

𝐸𝐶𝐶𝑠𝑖𝑛𝑔𝑙𝑒 = 3 ·𝑂 (2𝑒 + 𝑎
2𝑒
· 𝑛0
𝑒
) ·𝑂 (2𝑒 + 𝑎

2
) = 𝑂 (3(2𝑒 + 𝑎)

2

4𝑒
· 𝑛0
𝑒
) (27)

𝐶𝑜𝑛𝐶𝑠𝑖𝑛𝑔𝑙𝑒 = 3 ·𝑂 (2𝑒 + 𝑎
2𝑒
· 𝑛0
𝑒
) = 𝑂 (3(2𝑒 + 𝑎)

2𝑒
· 𝑛0
𝑒
) (28)

𝑃𝐶𝐶𝑠𝑖𝑛𝑔𝑙𝑒 = 3 ·𝑂 (1
𝑘𝑒
· 𝑛0
𝑒
) ·𝑂 (2𝑒 + 𝑎

2
) = 𝑂 (3(2𝑒 + 𝑎)

2𝑘𝑒
· 𝑛0
𝑒
) (29)

Since there are 𝑂 (𝑘𝑎) context changes in total, the overall time complexity of1545

existing techniques are as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑎(2𝑒 + 𝑎)
2

4𝑒
· 𝑛0
𝑒
) (30)

75

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑎(2𝑒 + 𝑎)
2𝑒

· 𝑛0
𝑒
) (31)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑎(2𝑒 + 𝑎)
2𝑒

· 𝑛0
𝑒
) (32)

(2) Only 𝐷𝑆𝑒𝑡 changes. The only difference between this case and the 𝐴𝑆𝑒𝑡 case

is that some nodes are removed instead of newly added. Therefore, we can1550

similarly obtain the following expressions: 𝑁 = 𝑂 (2𝑒 − 𝑑
2𝑒
· 𝑛0
𝑒
), Δ = 𝑂 (1

𝑒𝑘
· 𝑛0
𝑒
),

𝐵 = 𝑂 (2𝑒 − 𝑑
2
), and𝑈 = 𝑂 (1

2𝑘𝑒
·𝑛0
𝑒
). Consequently, the overall time complexity

of existing techniques are as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑑 (2𝑒 − 𝑑)
2

4𝑒
· 𝑛0
𝑒
) (33)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑑 (2𝑒 − 𝑑)
2𝑒

· 𝑛0
𝑒
) (34)

1555

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (𝑑 (2𝑒 − 𝑑)
𝑒

· 𝑛0
𝑒
) (35)

(3) Only 𝑈𝑆𝑒𝑡 changes. Since 𝑈𝑆𝑒𝑡 is regarded as a list containing 𝑂 (𝑘𝑢) deletion

changes and then 𝑂 (𝑘𝑢) addition changes, we can consider this case as a 𝐷𝑆𝑒𝑡

case and its reverse. Therefore, by adapting the analysis from the𝐷𝑆𝑒𝑡 case, we

can estimate the overall time complexity of existing techniques in this case as

follows:1560

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑢 (2𝑒 − 𝑢)
2

2𝑒
· 𝑛0
𝑒
) (36)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑢 (2𝑒 − 𝑢)
𝑒

· 𝑛0
𝑒
) (37)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑢 (2𝑒 − 𝑢)
𝑒

· 𝑛0
𝑒
) (38)

Nested structure. Based on Equation (15) in the main article, the number of

nodes in one sub-tree of node 𝑟 is 𝑂 (1
2
ℎ𝑒𝑘−1) = 𝑂 (𝑛0

𝑒
).

(1) Only 𝐴𝑆𝑒𝑡 changes. In this case, the number of nodes in one sub-tree of node1565

𝑟 changes from 𝑂 (𝑛0
𝑒
) to 𝑂 ((𝑒 + 𝑎

𝑒
)𝑘−1𝑛0

𝑒
) evenly. Therefore, 𝑁 = 𝑂 (1

2
(1 +

(𝑒 + 𝑎
𝑒
)𝑘−1)𝑛0

𝑒
). Since the exponent expression grows rapidly, (𝑒 + 𝑎

𝑒
)𝑘−1 is

supposed to be much greater than 1. Therefore, we roughly estimate 𝑁 as

76

𝑂 (1
2
(𝑒 + 𝑎

𝑒
)𝑘−1𝑛0

𝑒
). Similarly, we can estimate Δ as 𝑂 (1

𝑘𝑎
(𝑒 + 𝑎

𝑒
)𝑘−1𝑛0

𝑒
) and𝑈

as𝑂 (1
2𝑘𝑒
(𝑒 + 𝑎

𝑒
)𝑘−2𝑛0

𝑒
). 𝐵 is𝑂 (2𝑒 + 𝑎

2
), which is the same to that in 𝐴𝑆𝑒𝑡 case1570

on parallel structure. Therefore, we can estimate the overall time complexity of

existing techniques as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑎(2𝑒 + 𝑎)
4

(𝑒 + 𝑎
𝑒
)𝑘−1 · 𝑛0

𝑒
) (39)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑎
2
(𝑒 + 𝑎

𝑒
)𝑘−1 · 𝑛0

𝑒
) (40)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3(2𝑒 + 𝑎)
2

(𝑒 + 𝑎
𝑒
)𝑘−1 · 𝑛0

𝑒
) (41)

(2) Only 𝐷𝑆𝑒𝑡 changes. In this case, the number of nodes in one sub-tree of node1575

𝑟 decreases from 𝑂 (𝑛0
𝑒
) to 𝑂 ((𝑒 − 𝑑

𝑒
)𝑘−1𝑛0

𝑒
). Since

𝑒 − 𝑑
𝑒

< 1 and exponent

expression changes rapidly, (𝑒 − 𝑑
𝑒
)𝑘−1 is supposed to be much less than 1.

Therefore, we can similarly obtain the following expressions: 𝑁 = 𝑂 (1
2
· 𝑛0
𝑒
),

Δ = 𝑂 (1
𝑘𝑑
· 𝑛0
𝑒
), 𝐵 = 𝑂 (2𝑒 − 𝑑

2
), and 𝑈 = 𝑂 (1

2𝑘𝑒
· 𝑛0
𝑒
). Then the overall time

complexity of existing techniques are as follows:1580

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑑 (2𝑒 − 𝑑)
4

· 𝑛0
𝑒
) (42)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑑
2
· 𝑛0
𝑒
) (43)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 ((𝑒 + 𝑑) (2𝑒 − 𝑑)
2𝑒

· 𝑛0
𝑒
) (44)

(3) Only𝑈𝑆𝑒𝑡 changes. Considering this case as a 𝐷𝑆𝑒𝑡 case and its reverse, we can

adapt the analysis from the 𝐷𝑆𝑒𝑡 case and estimate the overall time complexity

of existing techniques as follows:1585

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑢 (2𝑒 − 𝑢)
2

· 𝑛0
𝑒
) (45)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (3𝑘𝑢 · 𝑛0
𝑒
) (46)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂 (4𝑒
2 − 𝑢2

𝑒
· 𝑛0
𝑒
) (47)

77

	Introduction
	Background
	Preliminary
	Illustrative Example and Challenges
	Problem Formulation

	Methodology
	Approach Overview
	WHAT-TO-CHECK: Task Arrangement
	HOW-TO-CHECK: Check Fusion
	INFuse Realization Details
	INFuse Complexity Analyses

	Evaluation
	Research Questions
	Experimental Design and Setup
	Experimental Results
	RQ1 (Motivation)
	RQ2 (Effectiveness)
	RQ3 (Fusion Effect)
	RQ4 (Complexity Factor)
	RQ5 (Practical Usage)

	Threats Analysis and Discussion

	Related Work

	Conclusion
	Acknowledgement
	Appendix
	Functions and Operators
	Affected function
	Flip and FlipSet functions
	Type and Assignments functions
	Concatenate function and otimes operator

	Truth Value Evaluation
	Existential formula
	or and implies formulas

	Link Generation
	Existential formula
	and, or, and implies formulas

	Time complexity analysis

